DOI QR코드

DOI QR Code

Effects of Wavelength Dependent Birefringence inside a Fiber Cavity on the Fiber Laser Output Characteristics with a Nonlinear Amplifying Loop Mirror

  • Kim, Ho-Young (Electronics and Telecommunications Research Institute) ;
  • Kim, Kyong-Hon (Electronics and Telecommunications Research Institute) ;
  • Lee, El-Hang (Electronics and Telecommunications Research Institute)
  • Received : 1998.06.08
  • Published : 1998.09.01

Abstract

We have theoretically analyzed and experimentally observed the effects of wavelength dependent birefringence inside a laser cavity on the output characteristics of fiber lasers with a figure eight geometry. The spectral and polarization characteristics of fiber lasers are found to be very susceptible to the resultant birefringence composed of the intrinsically existing wavelength dependent birefringence and the externally induced birefringences inside the fiber. For the variation of twist-induced birefringence inside the nonlinear amplifying loop mirror, the laser output power and center wave-length of continuous wave lasers change periodically, but the polarization characteristics remains nearly unchanged. The changes of the birefringence inside the linear loop has little effect on the spectral characteristics but changes the polarization properties such as the polarization direction.

Keywords

References

  1. I. N. Duling III, Elecron. Lett. 27, 544 (1991) https://doi.org/10.1049/el:19910342
  2. A. G. Bulushev, E. M. Dianov, and O. G. Okhotnikov, Opt. Lett. 16, 88 (1991) https://doi.org/10.1364/OL.16.000088
  3. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, M. W. Phillips, Electrons Lett. 27, 1451(1991) https://doi.org/10.1049/el:19910909
  4. I. N. Duling III, Opt. Lett. 16, 539 (1991) https://doi.org/10.1364/OL.16.001947
  5. K.H.Kim, M.Y. Jeon, S.Y. Park, H.KLee, and E. H.Lee, ETRI J. 18, 1 (1996) https://doi.org/10.4218/etrij.96.0196.0011
  6. H. Lin, D. K Donald, and W. V. Sorin, J. Lightwave. Technol. 12, 1121 (1994) https://doi.org/10.1109/50.301803
  7. A. J. Stentz, and R. W. Boyd, Opt. Lett. 19, 1462 (1994) https://doi.org/10.1364/OL.19.001462
  8. R. Ulrich, and A. Simon, Appl. Opt. 18, 2241 (1979) https://doi.org/10.1364/AO.18.002241
  9. N. Eickhoff, Y. Yen, and R. Ulrich, Appl. Opt. 20, 3428 (1981) https://doi.org/10.1364/AO.20.003428
  10. P. K A. Wai and C. R. Menyuk, J. Lightwave. Technol. 14, 148 (1996) https://doi.org/10.1109/50.482256
  11. H. Y. Kim, S. K Kim, H. J. Jeong, H. K Kim, and B. Y. Kim, Opt. Lett. 20, 386 (1995) https://doi.org/10.1364/OL.20.000386
  12. H. Haus, E. P. Ippen, and K Tamura, IEEE J. Quan-tum Electron. 30, 200 (1994) https://doi.org/10.1109/3.272081
  13. G. Stephan, R. Le Naour , and A. Le Floch, Phys. Rev. A17, 733 (1977) https://doi.org/10.1103/PhysRevA.17.733
  14. N. Mander, A. Chankari, P. Meyrueis, and M. Clement, Appl. Opt. 34, 6489 (1995) https://doi.org/10.1364/AO.34.006489
  15. H. Y. Kim, El Hang Lee, and B. Y. Kim, Appl. Opt. 36, 6764 (1997) https://doi.org/10.1364/AO.36.006764

Cited by

  1. Induction of the P450 reporter gene system bioassay by polycyclic aromatic hydrocarbons in Ulsan Bay (South Korea) sediments vol.111, pp.3, 2001, https://doi.org/10.1016/S0269-7491(00)00087-7
  2. BUTYLTINS IN SEDIMENTS AND THREE-SPINED STICKLEBACK (GASTEROSTEUS ACULLEATUS) FROM THE MARINAS OF THE GULF OF GDAŃSK, BALTIC SEA vol.37, pp.3, 2002, https://doi.org/10.1081/ESE-120002834
  3. Organotin residues and the role of anthropogenic tin sources in the coastal marine environment of Indonesia vol.50, pp.2, 2005, https://doi.org/10.1016/j.marpolbul.2004.11.041
  4. Status and trend of butyltin contamination in Masan Bay, Korea vol.3, pp.1, 2011, https://doi.org/10.1007/s13530-011-0077-2
  5. Impact of Booster Section Length on the Performance of Linear Cavity Brillouin-Erbium Fiber Laser vol.18, pp.2, 2014, https://doi.org/10.3807/JOSK.2014.18.2.162
  6. Butyltin compounds in sediment and fish from the Polish Coast of the Baltic Sea vol.6, pp.4, 1999, https://doi.org/10.1007/BF02987327