Single crystal growth of syntheric emerald by reflux method of temperatute gradient using natural beryl

천연베릴을 이용한 온도구배 환류법에 의한 합성 Emerald 단결정 육성

  • Published : 1998.08.01

Abstract

Emerald ($3BeO{\cdot}Al_2O_3{\cdot}6SiO_2:Cr^{3+}$) single crystal was grown by temperature gradient reflux method with using Korean natural beryl. The flux of lithium-molibudenium-vanadium oxide system was made by means of mixing the 2 sort of flux which were differently melted $Mo_3-Li_2O$ and $V_2O_5-Li_2O$ each other. The optimum composition of flux was 3 mole ratio of molibudenium. vanadium oxides to lithium oxide ($(MoO_3+V_2O_5)/Li_2O$), flux additives were substituted more less then 0.2 mole% of $K_2O$ or $Na_2O$ to the $Li_2O$ amount. The melting concentration of mixing beryl material was 3~10% content to the flux, that of $Cr_2O_3$ color dopant was 1% to the beryl amount. In the crystal growing apparatus with temperature gradient in the 3 zone furnace which was separated into the block of melt, growth and return, the solution have got to circulate continuously between $1100^{\circ}C$ and $1000^{\circ}C$ in steady state. When thermal fluctuation was treated to during 2 hrs once on a day at 950~$1000^{\circ}C$ in growth zone, the supersaturation solution was maintained, controled and emerald single crystal can be grown large crystal which was prevented from the nucleation of microcrystallite. The preferencial growth direction of hexagonal columnar emerald single crystal was the c(0001) plane of botton side and vertical to the m(1010) plane of post side.

한국산 천연베릴을 잉요하여 온도구배융제환류법에 의해 에메랄드($3BeO{\cdot}Al_2O_3{\cdot}6SiO_2:Cr^{3+}$) 단결정이 성장되었다. 리튬-몰리브데늄-바나디움 산화물계 융제는 $(MoO_3+V_2O_5)/Li_2O$, 와 $V_2O_5-Li_2O$를 서로 다르게 용융한 2종류의 융제를 혼합하여 제조하였다. 융제의 최적 조성은 산화몰리브데늄.바나디움에 대한 산화리튬의 몰비($(MoO_3+V_2O_5)/Li_2O$)가 3몰이었고 융제첨가제는 Li2O량에 대하여 $K_2O$ 또는 $Na_2O$를 0.2mole% 이내로 치환하였다. 베릴원료의 용융 농도는 융제량에 대하여 3~10% 함량이었고, $Cr_2O_3$ 발색제는 베릴량에 대하여 1%이었다. 융액은 용융, 성장, 회수 블록으로 나뉘어진 3지대 온도구배 결정성장로에서, $1100^{\circ}C$$1000^{\circ}C$ 사이의 안정상태에서 연속적으로 순환되도록 하였다. 에메랄드 단결정은 성장지대에서 950~$1000^{\circ}C$ 구간에서 1일 1회 2시간동안 열진동 처리하였을 때 미소핵의 생성이 억제된 대형 단결정을 성장시킬 수 있었다. 육각주상 에메랄드 단결정의 우선성장방향은 c(0001) 바닥면이었고, m(1010) 기둥면에 수직이었다.

Keywords

References

  1. Bull. Syst. Tech. Jour. v.38 J.E. Geusic;M. Peter;E.O. Schulz-du Bois
  2. J. Apply. Phys. v.32 F.E. Goodwin
  3. U.S. Patent, 3567642 M. Flanigen
  4. 일본화학회 v.9 Masumi Ushio
  5. 일본보석학회지 v.1 no.2 近山晶
  6. J. Cryst. Growth. v.35 K. Nassau
  7. 일본화학회 v.2 潮眞澄
  8. U.S. Patent 4093502 Hirabbayashi
  9. 일본보석학회지 v.5 no.1 阪大敎養
  10. 일본화학회 v.11 井上喜夫;森下敏彦;成田榮一;岡部泰乙郞
  11. Science of the Solid State v.16 Crystal Growth Brian R. Pamplin
  12. J. Cryst. Growth. v.73 J. Yoshimura;Y. Koishi
  13. Crystal Growth Process J.C. Brice
  14. Z. anorg. Chem. Phase diagram Fig 186, System $Li_2MoO_4-MoO_3$ F. Hoermann;
  15. J. Phys. Chem. v.66 Phase diagram Fig 2281, System Fig.2282 $Li_2O-V_2O_5$ Arnold Reisman;Joan Mineo
  16. Trans, Indian cerm. Soc v.24 no.4 Phase diagram Fig 4548, System Beo-$Al_2O_3$-$SiO_2$ D. Gangnli;P. Saha
  17. japan patent, 60-77190 左勝惠二
  18. 일본세라믹협회 학술논문지 v.97 no.12 Tsuyoshi Furusakid
  19. 통상산업부보고서 천연 Beryl을 이용한 합성 Emerald 단결정 육성 기술개발(Ⅰ,Ⅱ,Ⅲ)
  20. Journal of Korean Association of Crystal Growth v.6 no.1 E.S. Choi;M.K. Kim;J.M. Lee;Y.P. Ahn;C.K. Seoh;C.J. Ahn