Metal/SiC(4H) 쇼트키 다이오드의 포텐셜 장벽 높이

Potential barrier height of Metal/SiC(4H) Schottky diode

  • 발행 : 1998.08.01

초록

Sb/SiC(4H) 및 Ti/SiC(4H) 쇼트키 다이오드(SBD)를 제작하여 그 특성을 조사하였다. 용량-전압(C-V) 측정으로부터 얻은 n-형 SiC(4H)의 주개(donor) 농도는 약 $2.5{\times}10 ^{17}{\textrm}cm^{-3}$이었다. 순방향 전류-전압(I-V) 특성의 기울기로부터 얻은 Sb/SiC(4H) 쇼트키 다이오드의 이상계수는 1.31이었고, 역방향 항복전장(breakdown field)은 약 4.4$\times$102V/cm 이었다. 용량-전압(C-V) 측정으로부터 얻은 Sb/SiC(4H) SBD의 내부전위(built-in potential) 및 쇼트키 장벽 높이는 각각 1.70V 및 1.82V이었다. Sb/SiC(4H)의 장벽높이 1.82V는 Ti/SiC(4H)의 0.91V보다 높았다. 그러나 Sb/SiC(4H)의 전류밀도와 역방향 항복전장은 Ti/SiC(4H)의 것보다 낮았다. Ti/SiC(4H)는 물론 Sb/SiC(4H) 쇼트키 다이오드는 고전력 전자소자로서 유용하다.

We have fabricated Sb/SiC(4H) Schottky barrier diode (SBD) of which characteristics compared with that of Ti/SiC(4H) SBD. The donor concentration of the n-type SiC(4H) obtained by capacitance-voltage (C-V) measurement was about $2.5{\times}10 ^{17}{\textrm}cm^{-3}$. The ideality factors of 1.31 was obtained from the slope of forward current-voltage (I-V) characteristics of Sb/SiC(4H) SBD at low current density. The breakdown field of Sb/SiC(4H) SBD under the reverse bias voltage was about $4.4{\times}10^2V$/cm. The built-in potential and the Schottky barrier height (SBH) of Sb/SiC(4H) SBD were 1.70V and 1.82V, respectively, which were determined by the analysis of C-V characteristics. The Sb/SiC(4H) SBH of 1.82V was higher than Ti/SiC(4H) SBH of 0.91V. However, the current density and reverse breakdown field of Sb/SiC(4H) were low as compared with those of Ti/SiC(4H). The Sb/SiC(4H), as well as the Ti/SiC(4H), can be utilized as the Shottky barrier contact for the high-power electronic device.

키워드

참고문헌

  1. Physica v.B185 J.W. Palmour;J.A. Edmond;H.S. Kong;C.H. Carter
  2. IEEE Elect. Dev. Lett. v.16 K. Ueno;T. Urushidani;K. Hashimoto;Y. Seki
  3. IEEE Elec. Dev. Letts. v.16 P.M. Shenoy;B.J. Baliga
  4. Appl. Phys. Lett. v.66 C.I. Harris;A.O. Konstantinov;C. Hallin;E. Janzen
  5. J. Kor. Phys. Soc. v.29 K.S. Park;K.A. Lee
  6. J. Kor. Phys. Soc. v.30 K.S. Park;T. Kimoto;H. Matsunami
  7. Kor. J. of Appl. Phys. v.10 K.S. Park;K.A. Lee
  8. J. Kor. Assoc. of Cryst. Grow. v.7 K.S. Park;K.A. Lee
  9. J. Appl. Phys. v.38 D.L. Barrett;R.B. Campbell
  10. Appl. Phys. Lett. v.65 A. Itoh;H. Akita;T. Kimoto;H. Matsunami
  11. Solid State Electron v.17 Y. Wu;R.B. Campbell
  12. Sov. Phys. Semicond. v.28 M.M. Anilin;A.N. Andreev;A.A. Iebedev;S.N. Pyaiko;M.G. Rastegaeva;N.S. Savkina;A.M. Strel'chuk;A.L. Syrkin;V.E. Chelnokov
  13. IEEE Elec. Dev. Lett. v.16 A. Itoh;T. Kimoto;H. Matsunami
  14. Doctorate Dessertation, Kyoto Univ. Control of Electrical Properties of 4H-SiC Grown by VPE for Power Electronic Application A. Itoh
  15. J. Appl. Phys. v.61 H. Okumura;E. Sakuma;J.H. Lee;H. Mukaida;S. Misawa;K. Endo;S. Yoshida
  16. Semiconductor Optoelectronics J. Singh
  17. Physics of Semiconductor Devices S.M. Sze
  18. Doctorate Dessertation, Dankook Univ. Physical Properties of Silicon Carbide and Device Applications K.S. Park