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Cytokines regulate proliferation, differentiation and functions of haemo-
topoietic cells. Each cytokine possesses a variety of activities on various
target cells (pleiotropy) and various cytokines have similar and overlapping
activities on the same target cells (redundancy). The nature of these
cytokine activities predicts unique feature of cytokine receptors, namely,
cytokine has multiple receptors, different cytokines share a common
receptor, and different cytokine receptors are linked to common signaling
pathways. cDNA cloning of genes for cytokine receptors revealed distinct
sets of receptor family with different structural features. The cytokine
receptor superfamily consists of a largest family, and contains more than
twenty cytokine receptor subunits. This receptor has common structural
features in both extracellular and intracellular regions without tyrosine
kinase domain. Another striking feature of the receptor is to share com-
mon subunit of multiple cytokines, which partly explains the redundancy
of activities of some cytokines. Recent studies revealed detailed signaling
events of the cytokine receptor, the primary activation of JAK and
subsequent phosphorylation of tyrosine residues of receptor, and various
cellular proteins. Many SH2 containing adapter proteins play an important
role in cytokine signals, and this system has similarities with tyrosine
kinase receptor signal transduction. STAT may mainly account for cytokine
specific functions as suggested by knockout mice studies. It is of impor-
tance to note that cytokine activates multiple signaling pathways and the
balance and combination of related signaling events may determine the
specificity of functions of cytokines.

Hematopoietic cells are composed of various cells with
a homeostasis which is strictly regulated. In contrast to
constitutive hematopoiesis, inducible hematopoiesis plays
an important role in immune responses and inflam-
mation. Both types of hematopoiesis are regulated by
cytokines (Arai et al., 1990). Hematopoietic cells are
derived from multipotential stem cells that have the
capacity for self renewal and differentiation (Fig. 1) and
hematopoiesis involves multiple steps of differentiation
and proliferation of hemaopoietic progenitor cells. Stem
cells present in a hematopoietic microenvironment are
surrounded by stromal cells composed of multiple
types of cells, such as macrophages, endothelial cells,
fibroblasts, and adipocytes. These cells produce various
cytokines. Cytokines produced by activated T cells are
components responsible for inducible hematopoiesis.
To date, over fifty cytokines, including interleukins (ILs),
colony-stimulating factors (CSFs), interferons (IFNs),
chemokines, transforming growth factor-g (TGF-B) family,
tumor necrosis factor family and growth factors have
been identified. Each cytokine exhibits a variety of
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activities on several target cells (pleiotropy) and synergy
and cross-talk are often observed among the activities
of cytokines. In addition, many cytokines elicit similar
and overlapping activities on the same target cells
(redundancy), suggesting that cytokine signaling path-
ways are non-linear and form a network with consider-
abie cross-talk. Genes for cytokine receptors have
been isolated and structures have been elucidated.
Studies of signaling mechanisms of cytokine receptors
defined the molecular basis for hematopoietic related
events.

Cytokine Receptor

Cytokine receptors are classified into distinct sets of
families, based on their structural features (Miyajima et
al., 1992). Interestingly, structural features and biolo-
gical activities of cytokines have a significant corre-
lation (Fig.2). The most prominent group, cytokine
receptor super family, is a receptor for so-called a-
helical cytokines such as interleukins and colony
stimulating factors as well as growth hormone and
prolactin. This group is also known as a hemato-
poietic receptor family or class | cytokine receptor
family and most ligands of the receptor family have
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Fig. 1. Structure and function of cytokine receptor. Structural features and biological activities of cytokines have a significant correlation and each
receptor activates unique signal transduction pathways. Most haematopoietic cells express multiple different types of receptors and cross-takk
between these receptors may determine complexed phenotype of response to cytokines.

strong proliferation promoting activity. The macrophage
colony-stimulating factor (M-CSF) and stem cell factor
(SCF) receptors, encoded by proto-oncogenes c-fms
and c-kit, respectively, are members of class Ill of the
receptor-type tyrosine kinase (RTK) family which also
includes the platelet-derived growth factor receptor.
Signals mediated by RTKs are initiated by ligand-induced
dimerization of the receptor followed by activation of
intrinsic tyrosine kinase. Subsequently, autophosphory-
lation of RTKs occurs and signals such as MAPK
cascade are transduced through phosphorylation of
adapter proteins which recognize specific phosphor-
ylated residues of the receptor. The tumor necrosis
factor (TNF) receptor family is unique in that some
members of this family can transduce signals for cell
survival, while others for cell death; and some can
even transmit both survival and death signals, depend-
ing on the target cells. These receptors contain no
known enzymatic activities, instead have so-called
death domain which serves as a region for protein -
protein interactions for downstream signal transduction.
Several signaling cascades such as FADD, caspase
pathway lead to cell death by apoptosis, and the
TRADD, TRAF, NF-kB pathways which rescue cells from
apoptosis (Wallack, 1997). It was also reported that N
sphingo-myelinase, a fatty acid mediated signaling
pathway, was activated by Fas or TNF. Signals of
transforming growth factor-B (TGF-B) family ligands are
mediated through heteromeric complexes between
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type | and type Il (B-glycan) receptors, both of which
belong to the TGF-B receptor family and type |
contains the intrinsic serinefthreonine kinase domain
within cytoplasmic regions (Dijke et al., 1996). Ligand
binding results in formation of functional receptor
complexes and induces activation of Smads proteins
cascade and TAK/MAPK cascade (Heldin et al., 1997).
Unlike previously described cytokine receptors com-
posed of an extracellular and an intracellular region
separated by a single transmembrane segment, IL-8
and chemokines transmit signals through receptors
with seven transmembrane spanning regions coupled
to heterotrimeric G proteins. Detailed analysis of
signals of this type of receptor has not yet to be made.
Receptors for interferons and IL-1 are classified as the
class |l cytokine receptor family (Fig. 3). The structure
of this receptor family is closely related to class |
receptor and is assumed to have evolved from a
common ancestor with class | receptor family.

Sharing of Subunit of Cytokine Receptor Superfamily

Many class | cytokine receptors are composed of mul-
tiple distinct subunits. In most cases, one or two of
these subunits are shared by multiple different receptor
complexes (Fig.4). This system was first identified in
receptors for granulocyte-macrophage CSF, IL-3 and
IL-5. These receptor complexes are consisted of an a
subunit specific for each cytokine and the common B
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Fig. 2. Type | cytokine receptors. Cytokine receptors do not contain any enzymatic sequence or activity within receptor. Mutation analyses of
receptor revealed that most of the conserved motifs are essential for signal transduction of cytokine receptor.

subunit (Bc) shared by all. The a subunit binds to the
cognate ligand with a low affinity and subsequent
heterodimerization of @ and B subunits results in for-
mation a high affinity receptor complex. A sharing
subunit system was also noted for gp130, second and
signal transducing subunit of IL-6 receptor, and common
v subunit (yc), third subunit of IL-2 receptor. Homodi-
merization of gp130 or heterodimerization between
gp130 and LIF receptor is necessary for signal trans-
duction of IL-8, IL-11, OSM, LIF, and CT-1 of receptors
(Lindberg et al.,, 1998). Mutation analysis of gp130
showed that IL-11 receptor and IL-6 receptor recognize
overlapping binding motifs on gp130 (Dahmen et al.,
1998). Receptors for {L-4, IL-7, IL-9, and IL-15 share Y
¢. The IL-15 receptor complex shares yc as well as the
IL-2 receptor B subunit. These cytokines sharing com-
mon subunits have similar biological functions, thus this
subunit system may provide, at last in part, the
molecular basis for redundancy in cytokine function.
How these receptors exhibit specific functions and
common functions is a subject of much interest.
Analyses of knockout mice of cytokine and its receptor
give information for this question. Despite the fact that
mice and humans lacking yc have severe immuno-
logical defects (Noguchi et al.,, 1993), in the case of
mice (and humans) with a defect in {L-2, the main
cause of death is a disease similar to ulcerative colitis
(Sadlack et al., 1993). Thymocyte and peripheral T
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cells are fairly normal in these mice and humans
(Schorle et al, 1991). This difference means that
phenotypes indicates cytokine(s) rather than I[L-2 is
mainly responsible for T cell development. The first
insight into the notion that yc is used by a factor
rather than IL-2 was obtained by comparing findings in
patients with either IL-2 defect or yc mutation, X-linked
severe combined immune deficiency (X-SCID). Sub-
sequent work on knockout mice revealed that IL-7 is
mainly responsible for T cell development (Maeurer et
al., 1998). Similarly, in knockout mice of IL-6, LIF has
an almost normal phenotype, but mice lacking gp130
is embryonic lethal (Yoshida et al., 1996). Thus, in the
sharing receptor system, knockout of shared receptor
usually results in a severe phenotype, but defects in
other subunits or ligands lead to a relatively subtle
phenotype.

Signal Transduction of the Cytokine Receptor

Unique features of the cytokine receptor allow to predict
several key factors that determine the nature of the
signaling system of the cytokine receptor superfamily.
In initial studies of cytokine receptor signals, it was
thought that the unique structural features and the
rather limited expression in hematopoietic cells of the
cytokine receptor superfamily may account for the
cytokine or hematopoietic cell specific signaling me-
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Fig. 3. Sharing subunit of cytokine receptor. Sharing subunit is a unique feature which is founded only for cytokine receptor super family. The Bc,
vc, gp130 were shared by multiple receptors whose ligands have similar biological activities.

chanism. Subsequent studies revealed that cytokine
receptors utilize previously known common signaling
systems, such as the Ras/MAPK pathway and phos-
phatidylinositol-3-OH kinase (PI-3K). Involvement of new
members of the MAPK family, such as JNK (c-June
kinase) and p38 MAPK has been reported. JNK is
activated by various cytokines which promote prolifera-
tion (Liu et al., 1997a). Mutation analyses of Bc and
G-CSF receptors indicated that JNK activation due to
is downstream of ras, but the role of JNK activation
remains to be clarified (Liu et al, 1997a; Rausch et
al., 1997). JNK is apparently involved in apoptosis in
both positive and negative manners and balance of
activation of erk and JNK may contribute to determine
cell fate. Despite the lack of tyrosine kinase domains
within the cytoplasmic regions of cytokine receptor
superfamily, stimulation by their ligands induces a
rapid and reversible tyrosine phosphorylation of various
proteins, including the receptor itself. Studies using
tyrosine kinase inhibitors also support the notion that
tyrosine phosphorylation is a key event in cytokine
receptor signaling. The Src family tyrosine kinases
were the initial candidate to be associated with the
cytokine receptor and to transduce signals. Some
members of Src tyrosine kinases were found to bind
to the cytokine receptor and roles in STAT activation
or proliferation promotion were reported, but these
functions are not ubiquitously observed within cytokine

156

receptor signals (Chin et al., 1998; Corey et al., 1998).
All of these signaling molecules are not specific for
cytokine receptor signaling, but this does not rule out
the possibility that each receptor is also linked to a
signaling pathway unique to the cytokine receptor
family. 1t is now assumed that JAK and STAT path-
ways play essential and specific roles in signaling of
cytokine receptors.

Role of JAKs in Cytokine Receptor Signal
Transduction

The JAK family kinases in mammals consists of JAK1,
JAK2, JAK3 and TYK2 (lhle et al, 1995), members
share seven homologous regions termed JAK homology
(JH) 1 to 7 domains and have no SH2 and SH3 or
PH domains (Fig.5). The kinase domain is located in
the JH1 domain. There is a pseudokinase domain
without any obvious kinase activity within the JH2
domain. Thus, it was termed JAK after the Roman
god, Janus, who guards gates with two faces (kinase
and pseudokinase domains) to keep watch on opposite
sides. This family was first identified, independently,
either by polymerase chain reaction using a consensus
sequence for tyrosine kinases or by low stringency
hybridization. No function of the JAK kinase in mam-
malian cells was known until its role in IFN signaling
was recognized. Studies of the IFN receptor signaling
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Fig. 4. Signal transduction of GM-CSF receptor. GM-CSF activates at
least two distinct signaling pathways. One for activation of c-myc and
proliferation which requires only box1 region of Bc. The other one for
activation of MAPK cascade followed by c-fos, c-jun induction which
requires C terminal tyrosine residues in addition of box1 region.

revealed that JAK family kinases are involved in
IFN-specific gene expression in cooperation with STAT
transcriptional factor (lhle, 1996). It was elegantly
demonstrated with mutant cell lines which were unable
to respond to either IFNa/B or IFNY (Darnell Jr. et al,,
1994). By complementation assay, JAK and STAT
were identified as essential component of iFNa/B as
well as IFNY signaling. Ihle’s group examined the role
of JAK kinases in the EPO receptor signaling and
found that JAK2 is activated in response to EPO

Table 1. Activation of JAK and STAT by cytokines
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Fig. 5. JAK and STAT. Schematic diagram of structure of JAK and
STAT are represented.

(Witthuhn et al., 1993). In addition, JAK2 associates
with the region of EPO receptor required for mitogenic
action and the tyrosine phosphorylation of cellular
proteins induced by EPO. Subsequent studies showed
that all cytokines activate JAK and STAT (Table 1)
(Watanabe et al., 1996a). Although the role in signaling
remains to be clarified, tyrosine kinase type receptors
such as EGF or SCF may activate JAK and STAT.

The essential role for JAK3 in lymphoid development
was noted in patients with severe combined immuno
deficiency (SCID) carrying a mutation in JAK3 (Macchi
et al.,, 1995; Russell et al., 1995) and in JAK3 knock-
out mice (Nosaka et al., 1995; Thomis et al., 1995). In
all cases, the phenotypes were similar to yc-deficient
ones. JAK2 knockout mice is embryonic lethal due to
the absence of a definitive erythropoiesis (Neubauer et
al., 1998; Parganas et al., 1998). Cells derived from
JAK2 defective mice failed to respond to EPO, TPO,
IL-3, GM-CSF and IFNY, but the response to G-CSF,
IFNa was unaffected. Disruption of JAK1 showed runt
at birth, failure to nurse and perinatal death. Jak1™
celis fail to respond to cytokines utilize class Il cytokine
receptors, Yc and gp130 (Rodig et al., 1998). All these
results indicate an essential role of JAKs in signal
transduction.

Group Cytokine JAK STAT
Bc GM-CSF, IL-3, IL-5 JAK1, JAK2 STATS
gp130(+LIFR) IL-6, IL-11, LIF, CNTF, OSM JAK1, JAK2, (Tyk2) STAT3, (1)
c IL-2, IL-7, IL-9, IL-15 JAK1, JAK3 STAT3, 5
IL-4Ra+yc IL-4 JAK1, JAK3 STAT6
IL-4Ra+IL-13R IL-13 JAK1 STAT6E
IL-12 JAK2, Tyk2 STATS, 4
G-CSF JAK1, JAK2 STAT1, 3
EPO JAK2 STATS
TOP JAK2 : STAT1, 3, 5
GH JAK2 STATS
PRL JAK1, JAK2 STATS
Leptin JAK2 STAT3, 5, 6
IFNR IFNa/B JAK1, Tyk2 STAT1, 2, 3
(class 1l R) IFNY JAK1, JAK2 STATH
IL-10 JAK1, Tyk2 STAT1, 3, (5)
EGF JAK1 STAT1, 3
RTK PDGF JAK1, JAK2, Tyk2 STAT1, 3
M-CSF JAK1, Tyk2 STAT1, 3, 5
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Fig. 6. Cytokine receptor and disease. Several diseases which has mutation within cytokine receptors were reported. Recent detailed studies of
receptor and its signal transduction serve molecular basis to understand the mechanism of diseases.

The molecular mechanism of activation of JAK has
been implicated by analogy with the model proposed
for growth factor receptors that have a tyrosine kinase
domain. Several lines of evidence showed that box1 is
required and is sufficient for activation or interaction of
JAK with the cytokine receptor and the box1-like motif
of the IFNa receptor 1 is assumed to be responsible
for TYK2 interaction. JAK binds constitutively to cytokine
receptors such as pc, EPO, and gp130 receptors. After
ligand stimulation, dimerization of cytokine receptor
subunits follows dimerization of associated JAKs and
results in cross-phosphorylation of JAKs.

STATs and Cell Differentiation

Six members of STAT family, STAT1 to 6, with similar
structural features have been identified (O’shea, 1997)
(Fig. 5). A DNA binding domain is located in the amino-
terminal half, and SH3-like and SH2 domains are in
the carboxy-terminal end (lhle, 1996). All STAT binding
sites are very similar with the consensus site being
TTCCXGGAA. The DNA-binding domains of STAT pro-
teins are highly conserved and the binding specificity
is in the carboxy-terminal end, as revealed by chimeric
motecules constructed from different STATs (Schindier
et al., 1995). There is a conserved tyrosine residue in
C terminal region and this residue plays an essential
role in the dimerization of STAT. The serine residue
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locates in the more C terminal region of the tyrosine
residues, which phosphorylates Erk-dependent and -
independent pathways. It appears to be involved in
STAT transcriptional activity at least in the case of
STAT1 and STAT3 (Chung et al., 1997). As is the case
with other SH2 containing proteins, STAT is assumed
to recognize specific sequence surrounding tyrosine
residues of the receptor and to bind to phosphorylated
specific tyrosine residues (Gerhartz et al.,, 1996; Stahl
et al, 1995). This recognition may account for the
specificity of type of STAT activation by each cytokine.

As observed in the IFN system, STAT proteins are
involved in the activation of cytokine-specific genes
(Darnell, 1997). Molecular cloning of STAT3 and STATS
(MGF) clearly showed that these STAT proteins are
involved in cytokine-specific gene regulation (Akira et
al., 1994; Wakao et al., 1994; Zhong et al., 1994).
Using dominant negative STAT3, it was shown that
G-CSF utilizes STAT3 for neutrophil differentiation, but
another pathway appears to be utilized for MPO gene
expression (Shimozaki et al., 1997). For neurite out-
growth, STAT4 negatively regulates MAP kinase-depen-
dent neurite outgrowth in PC12 cells (lhara et al., 1997).
The phenotype of knockout mice of STAT indicates
the role of STAT in cytokine specific functions in vivo.
No STAT1, STAT4, STAT5, and STAT6 knockout mice
revealed overt developmental abnormality. STAT1 knock-
out mice are sensitive to infection by microbial patho-



gens and viruses and fail to respond to IFN, but do
respond normally to other cytokines (Durbin et al.,
1996; Meraz et al., 1996). STAT4 knockout mice have
impaired in IL-12 functions such as the induction of
INFY, proliferation and cytolytic function of natural killer
cells and Th1 differentiation and the development of
Th2 cells is enhanced (Durbin et al,, 1996; Kaplan et
al., 1996b; Meraz et al., 1996; Thierfelder et al., 1996).
In contrast, STAT6 knockout mice lack the IL-4 induced
Th2 response and IgE class switching (Kaplan et al.,
1996a; Shimoda et al., 1996; Takeda et al., 1996).
Although STATS is activated by various cytokines such
as EPO, IL-3/IL-5/GM-CSF, prolactin, growth hormone,
TPO, the phenotype of STAT5A knockout mice develop
normally (Liu et al, 1997c). However, it is evident that
mammary lobuloalveolar outgrowth during pregnancy
was curtailed, and lactation after parturition failed. These
results suggest that STAT5a is an obligate mediator of
mammaopoietic and lactogenic signaling, but retardation
of proliferation by GM-CSF in bone marrow-derived
macrophages of STAT5a deficient mice has been
reported (Feldman et al.,, 1997). STAT3 knockout mice
died between embryonic days 6.5 and 7.5 indicating
that STAT3 is essential for early embryonic develop-
ment (Takeda et al., 1997).

Interestingly, the mice died earlier than gp130-
deficient mice which died about 12.5days. There is
probably an unknown ligand which does not use
gp130 for early STAT3-dependent embryonic develop-
ment of mice.

The role of STAT in cell proliferation is debatable.
Mutation analyses of the receptor domain of IL-4,
GM-CSF and EPO receptors show a lack of corre-
lation between cell growth and STAT6 (by iL-4) and
STATS5 (by GM-CSF, EPO) (Klingmuller et al., 1997).
In contrast, dominant negative STATS partially sup-
pressed IL-3 induced proliferation (Mui et al., 1996).
Activation of hematopoietic cell proliferation through
gp130 depends on activation of both STAT3 and
SHP-2 (Kim et al., 1998). On the other hand, activa-
tion of SHP-2 is not required for acute-phase plasma
(APP) proteins in hepatic cells, which indicates that
signaling for APP gene induction and proliferation pro-
motion differ qualitatively. Requirement of STAT3 in Src
induced cell transformation is also indicated (Trukson
et al.,, 1998). Taken together, it is speculated that
STAT3 may be involved in cell proliferation and other
STATs may play a role in cell differentiation. it has
also been suggested that STAT1 mediates cell growth
arrest by IFNy through activation of the cyclin-dependent
kinase inhibitor p21/WAF1/CIP1 gene. Involvement of
STAT5a in IL-2 receptor a subunit induction was also
reported (Nakajima et al., 1997). Therefore, STAT5a
may participate in cell proliferation by IL-2 indirectly
through induction of the IL-2 receptor a subunit. The
role of STAT5 in cytokines other than MGF signals
and the role of STAT3 in adult tissues remain to be
clarified in the near future.
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Mechanism of Activation of the MAPK Cascade

it is assumed that the substrate of JAK is not
restricted to STAT. Molecules including several SH2
containing proteins and the receptor itself seem to be
involved. In the case of the tyrosine kinase type
receptor, the central flow of signaling cascade is
initiated by phosphorylation of receptor tyrosine resi-
dues by tyrosine kinase followed by binding of SH2
containing signaling molecules to phosphorylate tyrosine
residue. SH2 proteins recognize the sequence sur-
rounding tyrosine residue, the result being specific
interaction between certain tyrosine residues and SH2
proteins. This model also seems to be applicable for
cytokine receptors and JAK (Watanabe and Arai,
1996a). In the case of Bc, mutation analysis showed
that activation of the MAPK cascade and the sub-
sequent activation of the c-fos promoter required
cytoplasmic tyrosine residues in addition to the box1
region which is required for JAK2 activation. JAK2 is
primarily activated by GM-CSF stimulation and is
assumed to phosphorylate receptor tyrosine residues
(Watanabe et al.,, 1996b). Mutation analysis showed
that Tyr a.a. 577 is required for Shc phosphorylation
and Tyr a.a. 577, 612, and 695 are contribute to SHP-2
phosphorylation (ltoh et al., 1998). Similarly specific
utilization of certain tyrosine residues of the cytokine
receptor cytoplasmic region is seen within several
cytokine receptors such as gp130, and G-CSF (de
Koning et al., 1998).

Signaling for Proliferation and Anti-apoptosis

Although most ligands of the cytokine receptor super-
family are strong proliferation promoting factors, signa-
ling events leading to DNA replication and cell proli-
feration are largely unknown. Mutation analysis of Bc
showed that activation of the MAPK cascade is not
essential for DNA replication, in other words, only the
box1 region (JAK2 activation) seems to be essential
for DNA replication (Watanabe et al., 1993). This fact
indicates that unidentified signaling pathway activated
directly from JAK2 may be involved in cell proliferation.
Transcriptional activation of c-myc mRNA also requires
only the box1 region and involvement of E2F trans-
cription factor may play an important role in c-myc
promoter activation (Watanabe et al., 1995). E2F is
involved in transcriptional activation of other cell
proliferation related genes such as Orcl, and CDCS6,
thus, it is assumed that activation of E2F is one critical
event linked to the promotion of cell proliferation by
cytokines. Upstream signaling events of E2F activation
are unknown, however, the involvement of SH3 and
the ITAM domain containing protein STAM was noted
in c-myc activation and cell proliferation (Takeshita et
al., 1997).

Although signaling events and the mechanism leading
to initiation of cell proliferation are largely unknown,
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much attention has been directed to mechanisms of
anti-apoptosis activity. Withdrawal of |L-3 from progenitor
cell lines or from primary IL-3 dependent cells from
bone marrow resulted in apoptosis and there are
several IL-3 or GM-CSF dependent cell lines which
serve as good models for the study of apoptosis
(Packham et al., 1994). In these cells, apoptosis was
triggered by factor depletion, and exposing the cells to
v irradiation induced apoptosis at a faster rate than
that seen by factor depletion of the same cell line
(Canman et al, 1995). Mutation analyses of EPO
receptor and Bc for y-irradiation induced or factor
depletion induced apoptosis indicate an essential role
of JAK2, but not for STATs nor the MAPK cascade in
anti-apoptosis (Liu et al., 1997b; Quelle et al., 1998).
Involvement of Bcl-2 and Bcl-x. in anti-apoptosis has
been suggested and cytokines regulate related levels
of expression (Leverrier et al.,, 1997). The roles of
PI-3K, Akt kinase, and the BAD pathway have been
characterized in several systems, including IL-3 signal-
ing (Franke et al., 1997b). BAD heterodimerizes with
Bcl-x. or Bcl-2 and neutralizes their protective effects
and promotes cell death (Franke et al.,, 1997a) and
this activity is regulated by phosphorylation of BAD
which can be induced by IL-3 (Zha et al., 1996). After
IL-3 induces the activation of PI-3K and Akt, a serine-
threonine protein kinase, phosphorylation of BAD occurs
(Peso et al.,, 1997; Songyang et al., 1997). In contrast
to documented mechanisms of cascade of the PI-3K-
Akt-Bad pathway, the role of Ras-MAPK in anti-apop-
tosis remains to be clarified. Active Ras binds to PI-3K
(Rodriguez-Viciana et al., 1994), but it is still unclear
whether PI-3K is a downstream of ras in cytokine
signals.

Cross Talk between Cytokines

Various mechanisms have been suggested as explana-
tion cross-talk between cytokines in multiple steps for
receptor to nucleus. For example, IL-3 or GM-CSF
enhances EPO-dependent in vitro erythropoiesis by
primary hematopoietic progenitors and factor-dependent
cells. Physical association between Bc and the EPO
receptor was noted in these cells (Jubinsky et al.,
1997). As a signaling mechanism to explain this co-
ordination, tyrosine phosphorylation of Bc by EPO was
observed by other group (Chin et al., 1997). Not only
the interactions between cytokine receptors but also
the engagement of growth factor receptor kinase by
cytokine receptor were suggested. Tyrosine phosphoryl-
ation of the EPO receptor by c¢-Kit in response to SCF
stimulation has been reported. In a prostate cancer
cell line, in which ErbB2 was implicated in the neo-
plastic transformation, IL-6 induced tyrosine phosphoryl-
ation of ErbB2 and abrogation of IL-6 induced MAPK
activation by inhibition of ErbB2 activity (Qiu et al.,
1998). It is well documented that hematopoietic stem
cells and primitive progenitors require both an early
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acting cytokine such as SCF and a lineage-specific
cytokine such as EPO to differentiate to a certain
lineage. Regarding mechanisms related to this type of
cooperation among cytokines, induction of the EPOR
gene by SCF and resulting acquisition of respon-
siveness to EPO has been reported (Sato et al., 1998).

It is generally accepted that gene regulation through
enhancer is achieved by coordinated binding of multiple
transcription factors to regulatory elements. Cooperative
interactions among STAT through N-terminal domains
are required for optimal STAT binding within the IFNY
gene (Xu et al., 1996). Similar cooperative binding with
other transcriptional factors such as glucocorticoid
receptor and p300/CBP were recognized (Bhattacharya
et al.,, 1996; Stocklin et al., 1996).

Negative Signals of Cytokine Receptor

Recently, mechanism of diminishing the signaling of
cytokine receptor is paid much attention. At least three
different systems were assumed to inactivate signaling;
tyrosine phosphatase SHP-1, which dephosphorylates
and deactivate JAKs, degradation pathway of receptor
and STAT, negative feedback system, CIS family
proteins (Aman et al., 1997; Scharenberg et al., 1996).
Two tyrosine phosphatases, SHP-1 and SHP-2 are
involved in the cytokine receptor signal, both have
tyrosine phosphatase activity in the C terminal end,
and two SHZ2 regions. SHP-1 is expressed in only
hematopoietic cells, and SHP-2 expresses ubiquitously.
The role of SHP-1 was evidenced in mice lacking
SHP-1, termed Motheaten (Chen et al, 1996). The
model that binding of SHP-1 to the C terminal tyrosine
residue of EPO receptor and dephophorylate JAK2
was proposed (Jiao et al, 1996; Klingmuiler et al.,
1995). In contrast, SHP-2 acts positively to MAPK
cascade activation. SHP-2 may play a role as a doc-
king protein and also dephosphorylate protein which
regulates the MAPK cascade negatively; the substrate
is yet to be defined. Inactivation of STAT by dephos-
phorylation in nucleus and degradation by ubiquitin-
proteasome pathway were shown (Haspel et al., 1996;
Kim et al., 1996). Recently a set of proteins termed
CIS (cytokine-inducible SH2 proteins), SSI (STAT-
induced STAT inhibitor-1) or JAB (JAK-binding protein)
have been cloned (Endo et al.,, 1997; Naka et al,
1997; Starr et al., 1997). All these proteins can be
classified into the same family, "CIS family", based on
the structural homology. CIS contains SH2 protein in
the center of the molecule and a conserved domain
(CIS homology domain) in C terminus. Expression of
these proteins is induced by STAT and cytokine
signals are inhibited through binding to STAT, receptor
or JAK (Matsumoto et al.,, 1997). Negative effects of
one of these proteins, SOCS-3, to the leptin signaling
was found in mice in vivo model system (Bjorbaek et
al., 1998).



Disease and Cytokine Receptor

Cytokines such as G-CSF, EPO and M-CSF are
originally identified as activities which produce cells of
specific lineage. This is consistent with the idea that
diseases which affect cells of restricted lineage may
be caused by mutation of lineage-restricted cytokines
or its receptor. XSCID (X-linked severe combined immu-
nodeficiency) patients have no or severely decreased
number of peripheral T cells. Analysis of peripheral B
cells revealed that the patients have mutations within
yC. As discussed above, the phenotype of the patient
may not be caused by the defect of the IL-2 function.
Familial benign erythropoiesis is characterized by
increased number of erythrocyte and decrease of EPO
concentration in serum. This patient has deletion
mutation within EPO receptor lacking C terminal 70
amino acids. This region is termed as hypersensitive
domain which acts negatively on EPO functions through
phosphatase SHP-1 in vitro, as described before.
Kostmann syndrome is the most severe congenital
neutropenia of peripheral neutrophils characterized by
recurrent bacterial infection. The mutation of G-CSF
receptor was found with some patients. The region
carrying mutation was defined as differentiation inducing
region based on the fact that mutated receptor trans-
duces proliferation but not differentiation signals.
Patients of Laron dwarfism have mutated growth hor-
mone receptor which binds ligand but defective in
signal transduction. The Bc knockout mice showed
pulmonary alveolar proteinosis suggesting that Bc muta-
tion may be related to congenital pulmonary proteino-
sis in human (Nishinakamura et al.,, 1995). Leptin which
is recently identified as adipocyte-specific hormone
regulates adipose-tissue mass through hypothalamic
effects. Patient with homozygous mutation in the leptin
receptor gene shows early-onset morbid obesity with no
pubertal development accompanied by no or reduced
secretion of growth hormone and thyrotropin (Clement
et al., 1998).

During the past ten years, the structure and the
mechanism cytokine receptor signaling events were
revealed. Important findings are that cytokine activates
multiple signaling pathways within the cells and the
same set of signaling components are stimulated by
different cytokines. Cytokines activate cellular responses
such as proliferation, survival, differentiation, death and
variety of cellular functions. It remains to be fully under-
standed how cytokines regulate specific function in
target cells. The discovery of JAK and STAT pathway
helped to explain many crucial issues at molecular
level. JAKs play important roles in all aspects of cyto-
kine functions, whereas studies with various knockout
mice revealed that STATs function in cytokine specific
manner. As STATs cooperate with other transcription
factors, more complicated mechanism may operates to
achieve cytokine specific gene activation. Cytokines
activate multiple signaling pathways such as Ras/
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MAPK, Ras/JNK, PI3K/AKT pathways and other path-
way yet to be characterized which is activated directly
by JAK. Our next goal is to understand the basic
mechanism how cytokines, via multiple cross-talks
among these pathways, determine cell fate.
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