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Abstract

A diffuser, an important equipment to change kinetic energy into pressure energy, has been
studied for a long time. Though experimental and theoretical researches have been done, the
understanding of energy transfer and detailed mechanism of energy dissipation is unclear.

As far as numerical prediction of diffuser flows are concerned, various numerical studies
have also been done. On the contrary, many turbulence models have constraint to the
applicability of diffuser-like complex flows, because of anisotropy of turbulence near the wall
and of local nonequilibrium induced by an adverse pressure gradient.

The existing k-¢ turbulence models have some problems in the case of being applied to
complex turbulent flows. The purpose of this paper is to propose the new modified turbulence
model applicable to diffuser-like flows with expansion and streamline curvature. In order to
obtain the reliability of k-e turbulence model, modified combination turbulence models
composed of the anisotropic k-¢ model with Hanjalic-Launder’ s preferential normal strain and
Pope’ s vortex stretching mechanism are proposed. The results of the present proposed models
prove the fact that the coefficient of pressure and the shear stress are well predicted at the

diffuser flow.
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Nomenclature

x, r : axial and radial coordinates

: radius of inlet straight pipe

R, @ maximum radius at each position

D : diameter of inlet straight pipe

U,, : mean axial velocity

d;, : Kronecker delta

P : density

u, g, : viscosity, eddy viscosity

v, v, : kinematic viscosity, kinematic eddy
viscosity

C,, : constant of the nonlinear term in
anisotropic expression

C, : constant used in the inlet condition of

C., : constant of vortex-stretching term
1. Introduction

Diffusers are the fluid-mechanical equip
ment converting kinetic energy into pressure
energy. The importance of the diffuser has been
widely known ,especially, to the design of
turbomachineries. Though many experimental
and theoretical studies’~ have been done, the
turbulence of a conical diffuser flow is very
complicated and the understanding of the
detailed mechanism of energy transfer and
energy dissipation is still unclear. Numerical
studies of diffuser flows using k-¢ turbulence
models also show that they have some
constraint to the applicability of diffuser-like
complex flows, because of anisotropy of turbu
lence near the wall and of local nonequilibrium
induced by the adverse pressure gradients.

By the way, extra strain rates considering of
no importance are present in a complex shear
flow, even small values of them can have a
significant effect on the turbulence field, thus
invalidating the applicability of many turbu
** Therefore, these kinds of dif

fuser flows influenced by the severe adverse

f
lence models

pressure gradient and streamline curvature
are one of the important research fields of
numerical simulation of turbulence.

The purpose of this paper is to propose the
new modified turbulence model applicable to
diffuser-like flows with expansion and
streamline curvature. In order to obtain the
reliability of k-¢ turbulence model, modified
combination turbulence models composed of
the anisotropic k-¢ turbulence model expres
sion with Hanjalic-Launder’ s prefertial
normal strain® and Pope’ s vortex stretching
mechanism” are proposed. The experimental
data by Azad and Kassab” were used to
compare with numerical computation results.
The data are for a fully developed flow through
the 8 degree total angle conical diffuser. This
flow introduces a severe adverse axial pressure
gradient and streamline curvature at the

entrance of the diffuser.

2. Turbulence Models

2.1 Problems of the Standard k-¢
Turbulence Model

The governing equations solved are the
conservation of mass and momentum,

expressed as

ap U

_pL:() (1)
ax;

DU; 12P

LDy, 1er 2 eacts _1.
P o Toe [(+( + )]

where all the variables are ensemble
averaged quantities and the repeated indices
denote the summation over all directions. And
the eddy viscosity y, is evaluated by turbulent

kinetic energy(k) and its dissipation rate(e) as
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2

n,=C,p —}é—, and k and ¢ are governed by the

following transport equations.

p Dk [( 2k ]+ Py @
De 2 Ele Pas.
p Dt - 3x ( k [ng € {'
C€1£é_”;’i - ng (4)

where the production term P, and Reynolds
stress are defined as

al;
Pr=P,+ Pkn=—pﬁﬁj ax; (5)
. aU;
pu u=3pk8U u,t(;,x +ax) (6)

and the coefficients are chosen as follows” ;
C,=0.09, 6,=10,0,=13,C,, =144, C,=192.
In general, problems of the standard k-¢
turbulence model are(1) assumption of eddy
viscosity,(2) shortage of distribution mechanism of
Reynolds stresses,(3) constant Cp,(4)approx-
imation of transport equation for the dissipation
rate of turbulence energy(e), (5) the law of the
wall as a boundary condition®. The problem of e-
equation have been especially noted in diffuser-
like flows having adverse pressure gradient
effects and streamline curvature. It has been
reported a few of suggestions for modifing the
k- model, which aimed for the e-equation.
Hanjalic and Launder® pointed out the
special role that irrotational straining plays in
the spectral transfort from the large, energy-
containing to the small dissipating eddies. The
generation term in the e-equation involves in
its general form both rotational and
irrotational strain rates. Hanjalic and Launder
multiplied irrotational term by a larger empir
ical coefficient than the rotational one, in order
to bring the irrotational part into promi nence.
Rodi"” scrutinized the k-¢ turbulence model under

adverse pressure gradient conditions. The
modification gives rise to larger k - ¢ values,
therefore reducing the length scale and also the
shear stress.

Another modification suggested by Popem is
to introduce mean vortex stretching effects.
Pope solved round-jet/plane-jet anomaly using
the vortex-stretching invariant term (X=(k/ )
2, 2, S4), where 2;and S, are the rate of
mean rotation tensor and the rate of mean
strain tensor respevtively. Recently Shon et al™
showed that the vortex stretching invariant
term brought the significant improvement to
the prediction of symmetry boundary layers in
the strong mean flow convergence and
divergence.

However, previous modified models have
used experimental results to compensate the
shortage of distribution mechanism of normal
stresses, and modified k-¢ turbulence models
are weak in generality. In this paper new
modified models were proposed having
distribution mechanism of normal stresses on

the basis of an anisotropic expression.
2.2 Modified Combination Models

The modified combination model 1 is proposed,
which is composed of the anisotropic k — € model
with Hanjalic-Launder’ s preferential normal
strain. With anisotropic Reynolds stresses
expression, modified combination model 1
operates more effectively on the irrotational
generation term than previous modified models
having drawbacks of no distribution mechanism
of Reynolds stresses. The k —¢ equation of this

model is as follows :

De

2
- w2 ] E
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P
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J
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Pyn=-pug, — -~ (i=j) 9

3xj

o, u; -—3— ka,j—u,( aU‘ + 3U’)+

A 3C s,,,,-,-——:l3 Smady)  (10)
alJ;,al;

Sw= =, 5, ab

2Upm 3Uj, 2Um _2U;

Sg;= 2( ox, axm+ ax, _lax ) (12)
aUm aUm

8= Sx, Tax, (13)

Here C,, is the model constant defined in

usual anisotropic k- turbulence model

The modified combination model 2 has
Pope’ s vortex stretching mechanism added to
the modified combination model 1 as follows ;

De _ 2 %€
pDE = x((u+ B2 )+T[c£2
CE3 I';n C£2+ Cssx] (14)
X= (K0, 0 S (15)
- L [2U _Uz] (16)
1]au, , aU
seifgoy] o

An anisotropic Reynolds stress expression
has the second order nonlinear terms which
play as source term, and this model does not
become robust. So, calculations with the law of
the wall are unstable and diverge sometimes.
In the present paper Chen-Patel s two-layer
model " more economical than low Reynolds
number type was introduced to protect
anisotropic informations near the wall against
using the law of the wall and to enhance the

stability of modified models.

3. Numerical Analysis and
Boundary Condtion

The discretization of the governing equations
are obtained by integrating the strong
conservative form of differential equations over
finite control volumes. The convection-diffusion
formulation is based on a hybrid differencing
scheme developed by Spalding . A non-
staggered variable arrangement is used here
for all physical variables which are assumed to
be located at the centroids of control volumes.
In order to obtain the solution of Navier-Stokes
equations, the linearized equations are
converted to simple tridiagonal matrix systems
and solved by a line-by-line relaxation mathod.
The SIMPLE algorithm is used to update the
With a non-
staggered grid system, a special treatment is

new dependent variables.

required to obtain the cell face convection
quantities to prevent the checker-board type
oscillation. The cell face contravariant
velocities are obtained using Peric’ s
momentum interpolation method"”. The
coefficients are linearly interpolated, but
neighboring cell node pressures are used
rather than averaging the pressure gradients
for the control volumes. This enforces strong
velocity-pressure coupling. The grid system is
generated by Eiseman’ s algebraic grid
generation method "’ using 1-dimensional
stretching function for the two-dimensional
domain of a conical diffuser.

Four types of boundary conditions are
needed at the axisymmetric conical diffuser
flow ; these are inlet, outlet, solid wall and
axis of symmetry. At the inlet, the axial
velocity U and turbulent kinetic energy k are
obtained from the measurements of Ref.8,
whereas radial velocity V is taken to be zero
and the dissipation rate of turbulent kinetic
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energy ¢ is approximated by e=k"’/L based on
the equilibrium assumptionm and the data of
Laufer = In general the L=(CR,,) is adopted.
At the centerline, the normal gradient of all
flow quantities, except radial velocity V which
is set to zero at the boundary, is assumed to be
zero. At the exit, Neumann condition for all
variables is adopted. But a mass flow compens
ation is also applied for the satisfaction of
overall continuity at the exit. For the boundary
conditions at the near-wall control volume, the
wall function treatment is used for the
standard k-e turbulence model, whereas Chen
and Patel’ s two layer model " is used for the
modified combination models. The first points
along the wall are placed on the wall region 30
<y'<200 in the case of the standard k-¢

turbulence model.

Computational Domain
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Fig. 1. Conical diffuser geometry and coordinate
system

4. Results and Discussion

4.1 Results of Standard k-€ Turbulence Model

The diffuser geometry and the coordinate
system used in the calculation are shown in
fig.1. Reynolds number of the diffuser flow
based on the pipe diameter and mean axial
velocity is 115,000. The experimental values for
all of inlet boundary conditions were adopted
except €. It was found that inlet € distribution
play an important role in the accurate

prediction of the downstream mean velocity

field and the centerline decay of k from the
calculation of Lee and Kobayashi(3). Further
information was that turbulent kinetic energy k
is underpredicted rather than the measurement
value, and shear stress is overpredicted rather
than measured one through the interlinkage
and feedback system. Therefore physically
consistent profiles of € are needed to obtain the
optimum results.

The effect of inlet £ was simulated for three
cases of length scale, L(=k /). The predicted
radial velocity and turbulent kinetic energy at
various positions are shown in fig.2(a,b,c) for
the standard k-¢ model. It is seen from the
figures that the computational results are
sensitive to the inlet € values. Fig.2(a) shows
that turbulent kinetic energy along the
centerline of the diffuser develops very slowly
compared with experiment and the decreasing
rate of axial velocities is smaller than
experiment. Fig.2(c) shows that, although the
trend of the radial distribution of turbulent
kinetic energy agrees with experiment, the
peak values are smaller than fig.2(b) and the
decreasing rate of axial velocities is larger than
experiment. Fig.2(b) was adopted as the
optimun inlet conditions.

Fig.3 shows the only shear stress uv in the
axisymmetric diffuser flow. The predicted
values are approximately overestimated to the
maximum 25% at the downstream position.
Rodi and Scheuerer found that this fact
exists at the plane boundary layer flow with
adverse pressure gradient. The cause is due to
the fact that the production of ¢ is relatively
smaller than the production of k. The pro
duction term in 2-dimensional axial flow can

be written as follows ;
— S (® a3
Pr=-uv( %4—%)

Pks
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Fig. 2. Radial distribution of axial velocity and turbulent kinetic energy
(line=computation, symbol=experiment )
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~(uu ~oo) 2 - (ww-w) L (8)

—

Pkn

Here the most important term is usually the
production term by shear stress. However,
judging from fig.4 and Singh and Azad’s
experiments''®, it should be noted that the

production term by normal stress( uu % ) is

not negligible, especially important near the
inlet. Fig.4 shows that the numerical results of

normal strain rate % , which values are
relatively large near the inlet having big
pressure gradient and decrease downstream.
The reason why plus values exist near the wall
is due to the gradient along the axis, not the
gradient along the streamline direction.
Oomachi ' shows that zuz~ bv= ww in the
isotropic k - € turbulence model and the pro-
duction by normal stress can seldom affect as
compared with the production by shear stress.
This is one of the weak points. The other is the
underestimation of € as noted by previous
papers(z'a's" Rodi and Scheuerer used Hanjalic

— 17— symx/D
o 0.59
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g 20 !
(=]
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Fig. 3. Radial distribution of shear stress

and Launder’ s idea for irrotational part to
increase the production rate of the dissipation
rate of turbulent kinetic energy. Hanjalic and
Launder keep an eye on the irrotational
contribution(the production by normal stress)
to turbulent kinetic energy production P,. They
used C,3(=4.44) as the coefficient of the ¢
irrotational part of the production term in the
equation, without using traditional C, (=
1.44) ;

» Standard k-¢ turbulence model

Pe= % Ca (Pit Pi) (19)

¢ Hanjalic and Launder model

P.

I

x| o ajm

(Csl Pks +C£3P kn)

I

[CEI Pk+(ce3 - CEl) Pkn)] (20)

They also adopted the experimental values,
uu-vv =0.33k to escape the isotropic defect
concerning the distribution mechanism of
normal stresses. By comparing the standard k-

10

0.0

U/ Px(sT)

!
—
o

-30
0.0 0.2 04 0.6 0.8 1.0

I'/Rloc

Fig. 4. Radial distribution of normal strain rate by
numerical analysis
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¢ model and the Hanjalic and Launder model,
one can see that their model is more sensitive
to the decelerating flow field. However, it must
be noted that the Hanjalic and Launder model
has major problems with the violation of tensor
invariance and realizabilitym’

By the way, the nonlinear k-e turbulence
model which keeps tensor invariance shows
the reliable predictability for the anisotropy of
normal stresses. There are the possibility that
the production term by the normal stress
works well. This is the key point of the present
model. Discrepancies in the shear stress
between experiments and computations are
mainly due to the discrepancies in the length
scale resulting from the € equation.

4.2 Results of Anisotropic( or nonlinear) k-¢
Turbulence Model

To analyse the effects of nonlinear terms in
axisymmetric diffuser flow one can simplify
them by the order of magnitude using following

assumption ; :_xV, % , % < %. Reynolds

Y3l

» (8} .
stresses are written as follows

[ 2U 2 cl__cg)] 1)
= v, ( 2-—-Y)+ 2 k+£v,

(371 cirey)] (22)

ww = -v,(2 ¥)+% k+ % v,

(Lol

: Cy)| (23)

w= v, (2U+3Y (24)

From above reduced equations, it is seen

that though normal stresses have the second
order nonlinear terms, shear stress is the same
as the standard model.

It was confirmed from the previous
papersm'w'w that the anisotropic model shows
quite improvement for normal stresses due to
the distribution mechanism by the second
order nonlinear terms. This fact affects directly
the pressure coefficient and turbulent kinetic
energy. The coefficients of pressure along the
pipe wall which are most important in the
prediction of diffuser flows are seen in fig.5.
The difference between computations and
experiments increases downstream in the case
of the standard k-e turbulence model. But the
anisotropic model reproduces well experimental

1.2 T T Y T
1.0 F
08 F
0.6

3}
0.4

_0.2 i 1 A
-2.0 0.0 2.0 4.0 6.0 8.0

x/D
(a) isotropic model

1.2 Y T T T

x/D

(b) anisotropic model

Fig. 5. Coefficient of pressure along the pipe wall
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Fig. 6. Radial distribution of turbulent kinetic energy

trend because of correction of normal stresses.
Fig.6(b) and 7(b) also show good prediction for
turbulent kinetic energy and axial velocity
respectively. However, it is seen from fig.8(b)
that shear stress have little improvement as
already noted in the equation (21).

4.3 Results of Modified k-¢ Turbulence
Models

It was recognized from the calculation by
the standard model that shear stress was
computated bigger than experiment ;
nevertheless, turbulent kinetic energy is
smaller than experiment. Therefore modified

model 1 is adopted nonlinear terms as

) WWE SR

il

AL S

Loaasily

(b) anisotropic model
Fig. 7. Radial distribution of Axial velocity

Reynolds stress expression for promoting
turbulent kinetic energy. With correction on
normal stresses, the turbulent kinetic energy
production by normal stress terms will be
improved so that turbulent kinetic energy can
be computed more accurately. This could be
recognized in fig.6(b). But the values of shear
stress became still big. For solving such problem
in model 1, Hanjalic and Launder' s preferen
tial normal strain idea using approximately
twice for the production of e from irrotational
part in the € equation was adopted.

Fig.9(a) shows that turbulent kinetic energy
was calcualted less than in anisotropic model
due to the large production of the dissipation
rate of turbulent kinetic energy(e). Therefore
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Fig. 8. Radial distribution of shear stress

shear stress became relatively small as
compared with anisotropic model. This means
that eddy viscosity was evaluated smaller than
anisotropic model. By the small diffusion of
mean velocity caused by relatively small eddy
viscosity, it is seen from fig.11(a), 12(a), and
10(a) that velocity profiles and pressure
coefficients were predicted more accurately but
shear stresses have still problem.

For an axisymmetric conical diffuser flow,
the nondimensional vortex stretching invariant

term is written as follows.

z)

2000% (& /U,

0.0 bttt
0.0 0.2 0.4 0.6 0.8 1.0
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(a) model 1 sym x/D

)

2
m

2000% (« /U

)

2
n

2000% (k fU

(c) model 2(e=k**/0.59Rin)

Fig. 9. Radial distribution of turbulent kinetic

energy
1 ks 2U VeV
X"_4(E)(ar_ax)r (25)

Because of this vortex stretching, the gener
ation of € becomes large, and shear stress
decreases. The fact causes turbulent kinetic
energy to be decreased, therefore turbulent
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diffusion becomes small. From fig.9(b) and
10(b) we can find out that shear stress is well
predicted, however turbulent kinetic energy
along the centerline is poorly predicted as
going toward the exit because of one-sided
increase of €. It is also seen from fig.9(b) and
11(b) that turbulent diffusion caused by tur

bulent viscosity is very small near the exit so

(605)



30 BB FASWERE, $224 H5H, 1998

that velocity profile does not agree with experi
ments near the exit.

Fig.10(b) shows the radial distribution of
shear stress by model 2. Although the model 1
does not show improvement, the model 2 shows
dramatic correction. This means that the
distribution mechanism of normal stresses
based on anisotropic expression has still some
problems. And the fine adjustment of the inlet
¢ reproduces very well against measurements
without making an effect on the coefficient of
pressure and velocity(fig.10(c), 11(c), and
12(c)). From the viewpoint of ASM(Algebraic
Stress Model), we can obtain the following
simplied shear stress" .

1-C,

Tw= [ (PJe+C,— (26)

l)k]( ar

where C; and C, are constants. We can
conjecture from this equation (26) that it is
very difficult to improve the shear stress by
correcting only ¢ for various complex flow
fields. The reliable function between produc
tion and its dissipation rate is needed.

Fig.13 shows the ratios of normal Reynolds
stresses(vv/uu) of each model. If simplifying
the nonlinear terms by the order of magnitude

(in this case, we do not neglect 3;% ), normal

Reynolds stresses are written as follows

uu = “’:(2_)+ k+—-'v,

(2L E e+ ZeutZeg+

2 c,-4Co) (27)
=— v(2 %)+% k+—lz— v,
D+
B (-5 CitECy) (28)
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Fig. 12. Coefficient of pressure along the pipe wall

The standard k-e turbulence model which
does not have physically reliable distribution
mechanism of normal stresses shows counter-

trend in comparision to measurements. But
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Fig. 13. Ratios of normal Reynolds stresses

modified models show correct-trend of very difficult to improve the shear stress by
experimental results because of second order correcting only € for various complex flow fields.
nonlinear terms. The reliable function between production and
its dissipation rate is needed.
5. Conclusions
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