Biological Fixation of Carbon Dioxide by Synechocystis PCC 6803

Synechocystis PCC 6803에 의한 이산화탄소의 생물학적 고정화

  • 김장규 (현대중공업 마북리연구소) ;
  • 원성호 (성균관대학교 화학공학과) ;
  • 김남기 (성균관대학교 화학공학과)
  • Published : 1998.02.01

Abstract

Carbon dioxide is estimated to be responsible for 60% of the global warming effect, and this percentage is tending upward. Studies on removal and fixation of $CO_2$ in the flue gas are recognized as one of the important roles of the future biotechnology. Photobiological systems have considerably higher photosynthetic efficiency than conventional biomass system. The experiment for the photosynthetic fixation of $CO_2$ and the biomass production was performed with various initial cell concentration in a tubular photobioreactor and a bubble column $CO_2$ contactor with a gas sparger of $CO_2$ -enriched air(0.03~20%). Synechocystis PCC 6803 could grow at 10~20% $CO_2$ content under pH control. The highest specific growth rate, 0.0258 $h^{-1}$ , was obtained at 5% $CO_2$-air mixture. The maximum cell production rate, 0.2784 g/L.day, was obtained when the initial cell concentration was 0.45 g/L at 5% $CO_2$ -air mixture. The maximum cell concentration was 2.03 g/L in the tubular photobioreactor when the light intensity was $45.5{\mu}$ $E/m^2$ . s. This system showed 0.482 g $CO_2$ /L . day of the $CO_2$ fixation.

광합성 미생물의 고농도 배양에 의한 이산화탄소 고정능에 대한 기초 연구로써 관형 광생물반응기를 이용하여 이산화탄소 조성 및 초기균체농도에 따른 성장 경향을 보았다 배지의 pH가 지어되고 있는 조건하에서 20% 이산화탄소 혼합공기가 공급되는 조건에서도 성장이 이루어졌다 $45.5{\mu}E/m^2{\cdot}s$의 광강도에서 5% 이산화탄소 혼합공기 조성과 0.45 g/L의 초기균체농도에서 성장속도가 가장 우수하였으며, 비성장속도는 0.0258 $h^{-1}$를 나타냈고, 단위 시간당 균체생성량은 0.278 g/L . day 이다. 관형 반응기에서 최대균체농도는 2.03 g/L 까지 배양되었다. 배양된 균체의 원소성분분석을 통하여 Synechocystis PCC 6803의 분자식은 $C_{1.0}H_{2.022}N_{0.194}O_{0.443}S_{0.002}$로 계산되었고, 이산화탄소 고정화속도는 0.482g-$C0_2/L$ . day의 결과를 얻었다.

Keywords

References

  1. Z. Physik. Chem. v.106 Waburg,O.
  2. Journal of General Microbiology v.102 Assessment of Growth Yield of a Blue-green alga, Spirulina platensis in Axenic and Continuous Cluture Aiba,S.;T.Ogawa
  3. Journal of Chemical Engineering of Japan v.24 no.5 Chemometrics Approach to the Analysis of a Synergism of Temperature, Light Intensity and Carbon Dioxide Concentration on the Growth of Anacystis nidulans Suzuki,T.;K.Nishimura;K.Ohtaguchi;K.Koide
  4. J. Chem. Tech. Biotechnol. v.33B A Tubular Bioreactor for Photosynthetic Production of Biomass from Carbon Dioxide : Design and Performance Pirt,S.J.;Y.K.Lee;M.R.Walach;M.W.Pirt;H.H.M.Balyuzi;M.J.Bazin
  5. The Canadian Journal of Chemical Engineering v.63 Multistage Continuous Cultivation of Blue-green alga Spirulina maxima in the Flat Tank Photoreactors with Recycle Samon,R.;A.Leduy
  6. 井造船技報 v.151 光合成微生物を利用した 固定化技術の硏究 Matsumoto,M.;N.Hanagata;H.Uehara;Y.Fukuju
  7. Enzyme and Microbial Technology v.17 Hydrogen Photoproduction and Carbon Dioxide Uptake by Immobilized Anabaena variabilis in a Hollow-fiber Photobioreactor Markov,S.A.;M.J.Bazin;D.O.Hall
  8. Biotechnology and Bioengineering v.38 High-Density Photoautotrophic Algal Cultures: Design, Construction, and Operation of a Novel Photobioreactor System Javanmardian,M.;B.O.Palsson
  9. High CO₂Requiring Mutant of Anacgsis nidulans R₂Plant Physiol. v.82 Marcus,Y.;R.Schwarz;D.Friedberg;A.Kaplan
  10. Plant Physiol v.91 Isolation and Characterization of High CO₂Requiring Mutants of the Cyanobacterium Synechococcus PCC 7942 Price,G.D.;M.R.Badger
  11. Plant Physiol. v.94 Mutants of Synechocystis PCC 6803 Defective in Inorganic Carbon Transport Ogawa,T.
  12. Journal of Biotechnology v.25 no.3 Carbon dioxide Fixation by a Unicellular Green alga Docgstis sp. Takeuchi,T.;K.Utsunomiya;K.Kobayashi
  13. Bergy's Manual of Systematic Bacteriology v.3
  14. Journal of Bacteriology v.173 no.9 Light-Activated Heterotrophic Growth of the Cyanobacterium Synechocystis sp. Anderson,S.L.;L.McIntosh
  15. Advances in Biochemical Engineering/Biotechnology v.46 Biotechnological Reduction of CO₂Emissions Karube,I.;T.Takeuchi;D.J.Barnes
  16. J. Fermen. Bioeng. v.79 no.2 Effect of Cell Movement by Random Mixing between the Surface and Bottom of Photobioreactors in Algal Productivity Ogbonna,J.C.;H.Yada;H.Tanaka
  17. J. Chem. Tech. Biotechnol. v.61 A Mathematical Model of Microalgal Growth in Light-Limited Chemostat Culture Molina Grima;E.F.Garcia Camacho;J.A.Sanchez Perez;J.M.Fernandez Sevilla;F.G.Acien Fernandez;Contreras Gomez,A.
  18. Applied Biochemistry and Biotechnology v.34/35 CO₂Removal by High-Density Culture of a Marine Cyanobacterium Synechococcus sp. Using an Improved Photobioreactor Employing Light-Diffusing Optical Fibers Takano,H.;H.Takeyama;N.Nakamura;K.Sode;J.G.Burgess;E.Manabe;M.Hirano;T.Matsunaga
  19. Journal of Biotechnology v.37 Outdoor Culture of Isochrysis galbana ALⅡ-4 in a Closed Tubular Photobioreactor Molina Grima,E.;J.A.Sanchez Perez;F.Garcia Camacho;J.L.Garcia Sanchez;F.G.Acien Fernandez;D.Lopez Alonso