Effects of Metal Mg on Replacement Reaction of Molten Al for Fabrication of $Al_2$O$_3$//Al Composites

Al$_2$O$_3$/Al 복합체 제조시 용융 알루미늄의 치환반응에 미치는 금속 마그네슘의 영향

  • 정두화 (포항산업과학연구원 내화재료연구팀) ;
  • 배원태 (경상대학교 무기재료공학과)
  • Published : 1998.01.01

Abstract

Al2O3/Al composites were produced by immersing the sintered silica preform in molten aluminum which contained magnesium as impurity. Three distinct regions existed in the penetration behavior of molten me-tal with changing the reaction temperature. These regions are denoted as low temperature regime(75$0^{\circ}C$-85$0^{\circ}C$) intermediate regime(90$0^{\circ}C$-95$0^{\circ}C$) and high temperature regime(100$0^{\circ}C$$\leq$) In the low temperature regime the penetration speed of molten aluminum increased with increasing reaction temperature whereas it decreased in the intermediate regime due to the phase transition of alumina formed by displacement reac-tion. In the high temperature regime the penetration speed of molten aluminum was the highest at 100$0^{\circ}C$ which was 3.6 mm/hr But above 105$0^{\circ}C$ molten aluminum did not penetrate into the silica preform because of the formation of a dense spinel layer at the preform surface by magnesium in molten Al.

전융실리카 분말로 소결하여 만든 sihca preform을 마그네슘이 함유된 용융 알루미늄에 침적시킨후 공기중에서 반응시켜 Al2O3/Al 복합체를 제조하였다. 복합체 제조시 반응온도의 변화에 대해 용융 알루미늄의 침투거동을 조사한 결과 3가지 영역, 즉 저온영역(75$0^{\circ}C$-85$0^{\circ}C$), 중온영역(90$0^{\circ}C$-95$0^{\circ}C$), 고온영역(100$0^{\circ}C$$\leq$)으로 구분되었다. 저온영역에서는 반응온도에 비례해서 침투속도가 증가하였으나, 중간온도 영역은 치환반응에 의해 생성된 알루미나의 상전이에 따른 영향으로 저온영역인 85$0^{\circ}C$에서보다 오히려 침투속도가 감소하였다. 고온영역중 100$0^{\circ}C$이상에서 침투가 일어나지 않는 것은 용융 알루미늄중의 마그네슘이 먼저 실리카와 반응하여 silica preform의 표면에 치밀한 스피넬층을 형성하기 때문으로 판명되었다.

Keywords

References

  1. セラミツクス v.21 no.7 微構造制御と破壞じん性 鈴木惠一朗
  2. セラミツクス基複合材科 香川豊;八田博志
  3. セラミツクス v.21 no.7 セラミツクスのもろさを克服する 新原晧一
  4. In-Situ Composites: Science and Technology In-Situ Processing of Metal-Ceramic Composites S G Fishman;M.Singh(ed.);D. Lewis(ed.)
  5. Nature v.318 no.12 Ruch to Metal/Oxide Composites T. Beardsley
  6. J. Mater. Res. v.1 Fabrication of Lanxide TM Ceramic Composite Materials M.S. Newkirk;A.W. Urquhart;H.R. Zwicker;E. Breval
  7. Ceram. Eng. Sci. Proc. v.8 Preparation of LanxideTM Ceramic Matrix Composites:Matrix Formation by the Directed Oxidation of Molten Metals M.S. Newkirk;H.D. Lesher;D.R. White;C.R. Kennedy;A.W. Urquhart;T.D. Claar
  8. 金屬 v.59 no.7月 アルミナ-アルニュ-ム複合 松尾秀逸;伊藤和男;稻葉毅;酒井幸文
  9. セラミツクス v.26 融置換反 によるAl-Al₂O₃複合の作製 松尾秀逸;稻葉毅
  10. Ceram. Eng. Sci. Proc. v.15 no.4 Alumina/Aluminium Co-Continuous Ceramic Composites(C⁴)Materials Produced by Solid/Liquid Displacement Reactions:Processing Kinetics and Microstructures M.C. Breslin;J.R. Ringnalda;J. Seeger;A.L. Marasco;G.S. Daehan;L. Fraser
  11. In Situ Reaction for Synthesis of Composites, Ceramic and Intermetallic. Synthesis and Processing of Al₂O₃/Al Composites by In Situ Reaction of Aluminum and Mullite W.G Fahrenholtz;K.G. Ewsuk;R.E. Loehman;A.P Tomsia;E.B.Berrera(ed.);F.D.S. Marquis(ed.);W.E. Frazier(ed.);S.G Fishman(ed.);N.N. Thadhani(ed.);Z.A. Munir(ed.)
  12. 요업학회지 v.34 no.6 용융 Al의 치환반응에 의한 Al₂O₃/Al 복합체 제조 정두화;김용진;배원태