Effect if Grain Size on Plasticity of Ti$_3$SiC$_2$

Ti$_3$SiC$_2$의 소성 변형 특성에 미치는 결정립 크기의 효과

  • Published : 1998.08.01

Abstract

Mechanical properties of two types of polycrystlline {{{{ { { Ti}_{3 }SiC }_{2 } }} with different grain size were investigated. A fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} has a higher fracture strength and hardness. Plot of strength versus Vickers indentation load indicated that {{{{ { { Ti}_{3 }SiC }_{2 } }} has a high flaw tolerance. Hertzian indentation test using a spherical indenter was used to study elastic and plastic behavior in {{{{ { { Ti}_{3 }SiC }_{2 } }}. Indentation stress-strain curves of each material are made to evaluate the plasticity of {{{{ { { Ti}_{3 }SiC }_{2 } }} Both find and coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} showed high plasticity. In-dentation stress-strain curve of coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} deviated even more from an ideal elastic limit in-dicating exceptional plasticity in this material. Deformation zones were formed below the contact as well as around the contact area in both materials but the size of deformation zone in coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} was much larger than that in fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} Intragrain slip and kink would account for high plasticity. Plastic behavior of {{{{ { { Ti}_{3 }SiC }_{2 } }} was strongly influenced by grain size.

Keywords

References

  1. Monatsch Chem. v.98 Die Kristallstructur von Ti₁SiC₂-Ein Neuer Komplexcabid-Typ W. Jeitschko;H. Nowotny
  2. J. Am. Ceram. Soc. v.79 no.7 Synthesis and Characterization of a Remarkable Ceramic; Ti₁SiC₂ M. W. Barsoum;T. EI-Raghy
  3. Mater. Leet. v.20 Symmetry and Crystal Structure of Ti₁S₁C₂ S. Arunajatesan;A. H. Carim
  4. J. Am. Ceram. Soc. v.80 no.2 Damage Mechanisms around Hardness Indentations in Ti₁SiC₂ T. EI-Raghy;A. Zavahangos;M. W. Barsoum;S. R. Kalidindi
  5. J. Mater Synth. Proc. v.5 no.3 A Progress Report on Ti₁SiC₂TiGcC₂ and the H-Phases, M₂BX M. W, Barsoum;T. EI-Raghy
  6. J. Electrochem. Soc. v.144 no.7 Oxidation of Ti₁SiC₂ in Air M. W. Barsoum;T. EI-Raghy;L. U. J. T. Ogbuji
  7. J. Am. Ceram. Soc. v.81 no.1 Contact Damage Accumulation in Ti₁SiC₂ I. M. Low;S. K. Lee;B. R. Lawn;M. W. Barsoum
  8. J. Korean. Ceram. Soc. v.35 no.4 Mechanical Properties and Contact Damage Behavior of Ti₁SiC₂ S. K. Lee
  9. J. Am. Ceram. Soc. v.77 no.7 Effect of Grain Size on Hertzian Contact Damage in Alumina F. Guiberteau;N. P. Padture;B.R. Lawn
  10. Science v.263 Making Ceramies Duetile B. R. Lawn;N. P. Padture;H. Cai;F. Guiberteau
  11. Fracture of Brittle Solids; Ch9. B. R. Lawn
  12. J. Mater. Res v.9 no.3 Deformation and Fracture of Mica-Containing Glass Ceramics In Hertzian Contacts H. Cai;M. A. Stevens Kalceff;B. R. Lawn
  13. J. Am. Ceram. Soc. v.80 no.9 Role of Microstructure in Hertzian Contact Damage in Silicon Nitride: I. Mechanical Characterization S. K. Lee;S. Wuttphan;B. R. Lawn
  14. J. Am. Ceram. Soc. v.75 no.11 Objective Evaluation of Short-Crack Toughness- Curves Using Indentation Flaws; Case Study on Alumina-Based Ceramics L. M. Braun;S.J. Bennison;B. R. Lawn
  15. J. Am. Ceram. Soc. v.78 no.1 Flaw-Tolerance and R-curve Behavior of Liquid-Phase-Sintered Silicon Carbides with Different Microstructures S. K. Lee;D. K. Kim;C. H. Kim
  16. Acta Metall. v.36 no.3 Fracture Stability, R-Curves and Strength Variability R. F. Cook;D. R. Clarke
  17. Introduction to Dislocations: Chapter 10 D. Hull;D. J. Bacon