Effect of Grain Boundary Composition on Microstructure and Mechanical Properties of Silicon Carbide

입계상 조성이 탄화규소의 미세구조와 기계적 특성에 미치는 영향

  • 김재연 (서울시립대학교 재료공학과) ;
  • 김영욱 (서울시립대학교 재료공학과) ;
  • 이준근 (한국과학기술연구원 복합기능세라믹스 연구센터)
  • Published : 1998.09.01

Abstract

By using {{{{ { { {Y }_{3 }Al }_{5 }O }_{12 } }} (YAG) and SiO2 as sintering additives the effect of the composition of sintering ad-ditives on microstructure and mechanical properties of the hog-pressed and subsequently annealed SiC ma-terials were investigated. Microstructures of sintered and annealed materials were strongly dependent onthe composition of sintering additives. The average diameter and volume fraction of elongated grains in an-nealed materials increased with the SiO2/YAg ratio while the fracture toughness increased with the SiO2/YAg ratio. The average MPa.{{{{ { m}^{1/2 } }} respectively. Typical strength and fracture toughness of an annealed material with SiO2/YAg ra-tionof 0.67 were 371 MPa and 5.6 MPa.{{{{ { m}^{1/2 } }} respectively.

Keywords

References

  1. Special Ceramics 6 The Role of Boron and Carbon in the Sintering of Silicon Carbide S. Prochazka;P. Popper(ed.)
  2. J. Mater. Sci. v.19 Sinterability,Strength and Oxidation of Alpha Silicon Carbide Powders S. Dutta
  3. J. Mater. Sci v.30 Strengthening of Silicon Carbide by Surface Compressive Layer Y.-W. Kim;J. G. Lee
  4. J. Am. Ceram. Soc. v.77 no.2 In Situ-Toughened Silicon Carbide N. P. Padture
  5. J. Am. Ceram. Soc. v.77 no.10 Toughness Properties of a Silicon Carbide with an In Situ Induced Hetero-geneous Grain Structure N P. Padture;B R. Lawn
  6. J. Mater. Sci. v.29 Pressureless Sintering of β-SiC with Al₂O₃ M. A. Mulla;V. D. Krstic
  7. J. Am. Ceram. Soc. v.77 no.6 Effects of α-SiC versus β-SiC Starting Powders on Microstructure and Fracture Toughness of SiC Sintered with Al₂O₃-Y₂O₃ S. K. Lee;C. H. Kim
  8. Acta Metall. Mater v.42 no.1 Mechanical Properties of β-SiC Pressureless Sintered with Al₂O₃ Additions M. A. Mulla;V D. Krstic
  9. J. Am. Ceram. Soc. v.78 no.11 Grain Growth and Fracture Toughness of Fine Grained Silicon Carbide Ceramics Y.-W. Kim;M. Mitomo;H. Hirotsuru
  10. J. Am. Ceram. Soc. v.80 no.1 Microstructural Development of Silicon Carbide Containing Large Seed Grains Y.-W. Kim;M. Mitomo;H. Hirotsuru
  11. Kor. J. Ceram. v.2 no.1 Effect of Large α-Silicon Carbide Seed Grains on Microstructure and Fracture Toughness of Pressureless Sintered α-Silicon Carbide Y.-W. Kim;K. S. Cho;J. G. Lee
  12. Ceram. Int. Microstructure and Mechanical Properties of Self-Reinforced Alpha-Silicon Carbide C. S. Lee;Y -W. Kim;D. H. Cho;H. B. Lee;H. J. Lim
  13. Philos. Mat. Lett. v.64 no.4 Flaw-Insensitive Ceramics S. J. Bennison;N. P. Padture;J. L. Runyam;B. R. Lawn
  14. J. Am. Ceram. Soc. v.64 no.9 A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements G. R. Anstis;P. Chantikul;B. R. Lawn;D. B. Marshall
  15. J. Ceram. Soc. Jpn. v.104 no.9 Influence of Silica Content on Liquid Phase Sintering of Silicon Carbide with Yttrium-Aluminum Garnet Y -W. Kim;M. Mitomo;J. G. Lee
  16. J. Ceram. Soc. Jpn v.103 no.3 Influence of Powder Characteristics on Liquid Phase Sintering of Silicon Carbide Y.-W. Kim;H. Tanaka;M. Mitomo;S. Otam
  17. J. Am. Ceram. Soc. v.72 no.8 Pressureless Sintering of Alumina-Titanium Carbide Composites Y.-W. Kim;J. G. Lee
  18. J. Am Ceram. Soc. v.76 no.3 Core/Rim Structure of Liquid-Phase-Sintered Silicon Carbide L.S. Sigl;H.-J. Kleebe
  19. Kor. J. Ceram. v.2 no.3 Microstructure and Polytype of in Situ-Toughened Silicon Carbide Y -W. Kim;M. Mitomo;H. Hirolsuru
  20. J. Mater Sci. v.32 Strengthe and Fracture Toughness of in Situ-Toughened Silicon carbide D. H Cho;Y.-W. Kim;W. J. Kim