Development of Novel Ceramic Composites by Active Filler Controlled Polymer Pyrolysis with Tungsten

중석이 첨가된 고분자 유기물 열분해 방법에 의한 신세라믹복합체 개발

  • ;
  • ;
  • Peter Greil (University of Erlangen-Nuremberg Deop of Material Science Germany)
  • 강건택 (성균관대학교 공과대학 재료공학과) ;
  • 김득중 (성균관대학교 공과대학 재료공학과) ;
  • Published : 1998.09.01

Abstract

The formation microstructure and properties of novel ceramic composite materials by active filler con-trolled polymer pyrolysis were investigated. Polymethlsiloxane filled with W is of particular interested be-cause of the formation of ceramic bonded hard materials (WC-$W_{2}C$-$S_{1}OC$) for wear resistant applications. Highly metal-filled polymer suspensions were prepared and their conversion to ceramic composites by an-nealing in $N_{2}C$ atmosphere at 1000-$1600^{\circ}C$ were studied. Dimensional change porosity and phase distribution (filler network) were analyzed and correlated to the resulting material properties. Microcrystalline com-posites with the filler reaction products embedded to the resulting material properties. Microcrystalline com-posites with the filler reaction products embedded in a silicon oxycarbide glass matrix were produced. De-pending on the pyrolysis conditions ceramic composites with a density up to 95 TD% a hardness of 7-8.8GPa Yong's modulus of 220-230 GPa a fracture toughness of 6-6.8$MPam^{1/2}$ and a flexual strength of 380-470 MPa were obtained.

실리콘함유 고분자(Polysiloxane)의 세라믹변환과정에서의 부피수축효과를 조절하기 위하여 활성화금속으로 중석을 첨가하여 열분해 및 합성반응을 통해 신 세라믹 복합체를 개발하고 이의 세라믹화 과정이나 물성을 조사하였다. 제조된 시편의 미세조직은 고분자로부터 야기된 $S_{1}$-O-C게열의 Glass기지상과, 분해잔여물(고상,기상)등과 활성화금속과의 반응르로 생성된 고경도의 탄호물로 이루어져 있어 향후 내마모재료로서의 응용을 기대할 수 있을 것이다. 제조된 복합체의 물성은 반응조건에 많이 의존함을 알 수 있었다. 1400~$1500^{\circ}C$에서 열분해 시켜 제조한 복합체의 밀도는 95% 이상의 상대밀도와, 경도 값은 7~8GPa 정도이고 탄성률은 220~230 GPa, 파괴인성응ㄴ 6~6.8$MPam^{1/2}$, 파괴강도는 380~470 MPs정도의 값을 나타내었다.

Keywords

References

  1. Bull. Am. Ceram. Soc. v.62 Ceramics from Polymer Pyrolysis R. W. Rice
  2. Ann. Rev. Mat. Sci. v.14 Ceramics via Polymer Pyrolysis K. J. Wynne
  3. Adv. Mat. Ceramics from Organmetallic Polymer M. Peuckerl;T. Vaahs;M. Brueck
  4. J. Am. Ceram. Soc. v.78 Active Filler Controlled Pyrolysis of Preceramics Polymer (AFCOP) P. Greil
  5. J. Mater. Sci. v.27 Modeling Dimesional Change during polymer- Cerami Conversion for Bulk Component Fabrication P. Greil;M. Seibold
  6. J. Am.Ceram Soc v.76 Microstructure Development of Oxycarbide Composites during Active-Filler-Controlled Polymer Pyrolysis T. Erny;M. Seibold;O. Jaichow;P. Greil
  7. J. Mater. Sci. v.28 Characterization of the Pyrolytic Conversion of Polysilscsquioxanes to Silicon Oxycarbides F. I. Hurwitz;P. HeiMann;S. C. Farmer;D M. Hembree
  8. Met. Trans v.6A Free Energies of Formation of WC and W₂C and the Thermodynamic Properties of Carbon in Solid Tungsten D. K. Gupta;L L Seigle
  9. Fourth Euro-Ceramics v.1 Pyrolytic Conversion of Poly(Methylsiloxane) to Silicon(Oxy)carbide Ceramics H Schmidt;P. Buhleer;P Greil;C. Galassi(ed.)