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ABSTRACT

This paper proposes a new technique to formulate the finite element model of a
sandwich beam by using GHM (Golla-Hughes-McTavish) internal auxiliary coordinates
to account for frequency dependence. Through the use of auxiliary coordinates, the
equation of motion of undamped mass and stiffness matrix form is extended to
encompass viscoelastic damping matrix. However, this methods all suffer from an
increase in order of the final finite element model which is undesirable in many
applications. Here we propose to combine the GHM method with model reduction
techniques to remove the objection of increased model order.
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Nomenclature

Ap, A, Ac - Cross sectional area of the beam, lg”f;u@] . Internal balanced system, input and
viscoelastic, and constraining layer output matrices

[4}[B}[c] : Original system, input and output li][8]|c] : Intermediate system. input and
matrices output matrices

b Width of the sandwich beam

« Department of Eng. Science and Mecha- c : External damping coefficient
nics, Virginia Polytechnic Institute and State Univ. Ev, E.. E. : Young's modulus for the beam,
*AYHY, AU AFNALTA viscoelastic, and constraining layer
A3y EAGE 2 e 2473 Eo . Equilibrium value of the modulus
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E™" : nth complex modulus in the Laplace
domain

f . Externally applied forcing function

h : Thickness of the viscoelastic beam

h(s) : Material modulus function

I ¢ Identity matrix

I, I, I. © Area moment of inertia of the beam,
viscoelastic, and constraining layer

K" : The contribution of nth stiffness
modulus

K ! Stiffness matrix of the element

) * Element length of plate

M : Mass matrix of the element

P : Linear transformation of the system

q . Elastic degree of freedom

w : Transverse deflection of viscoelastic
beam

W, * Controllability grammian

w, " Observability grammian

z : Dissipation coordinates

Greek Symbols

a : Weighting constant on dissipation
coordinate

f * Damping ratio of dissipation coordinate

@ : Natural frequency of dissipation
coordinate

(o) . Stress matrix

o : Singular values of the grammians

[e)  Strain matrix

o : Mass density of viscoelastic beam

Ac : Eigenvalues

1. Introduction

Energy dissipation of flexible structures
plays a crucial role in the performance of a
wide variety of engineering systems such as
light space vehicles, automobiles, and communi-
cations satellite etc. Recently, many
researchers show that passive surface
treatments have been extensively utilized,
as a simple and reliable means, for damping
out the vibration of a wide variety of
flexible structures. Such surface treatments
rely in their operation on the use of viscoelastic
damping layers which are bonded to the
vibrating structures with a constrained
configuration. However, accurate mathematical
modeling of complex structures with viscoelastic
materials is difficult because the measured
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dynamic properties of viscoelastic material
are sensitive to frequency, temperature,
type of deformation, and sometimes amplitude.
Several researches have presented successful
methods of modeling the effects of viscoelastic
damping mechanisms which introduce hysterisis.

The Modal Strain Energy method (MSE)
proposed by Rogers, et. al.®® for estimating
the damping of composite structures from
the measured damping of constituent materials
has been very popular. However, dynamic
models based on the MSE method and
"modal damping” are deficient in the some
aspects which is especially important in
structural control applications for high-fidelity
dynamic models needed. Fractional derivative
model developed by Bagley and Torvik'” has
been shown to closely fit experimental data
over significant range of frequency. The
strength of this method lies in its efficient
way of modeling of viscoelastic material
behavior. However, the use of numerical
methods in performing the transforms to
describe the frequency dependent mechanical
properties of the viscoelastic materials is
cumbersome. While dissatisfaction with
available techniques has motivated several
alternative lines of research, one pursued
by Golla, Hughes, and McTavish®!® that
has led to finite elements for modeling
linear viscoelastic structures is most closely
related to the subject Augmenting Thermodynamic
Fields (ATF) method proposed by Lesieutre
and his coworkers'’?"'¥  Like ATF. GHM
employs additional coordinates to more
The GHM uses a
second order physical coordinate system and
the Leisutre approach uses a first order
state space method. Both are superior to
the Modal Strain Energy (MSE) as they
capture the transient response characteristics

acutely model damping.

of the material. These two complex
approaches are able to account for damping
effects over a range of frequencies, complex
mode behavior, transient responses and
both time and frequency domain modeling.
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)
Inman

applied the GHM approach to
simple beams and Banks and Inman'®
provide alternate time domain method for
modeling hysterisis.

Here we examine the Golla~Hughes-McTavish
(GHM) finite element modeling method''®
which represents a FEM model of viscoelastic
structures by introducing a dummy variable
and modeling the hysteresis with a transfer
function. The main advantage in using the
GHM method over the AFT method is that
GHM keeps the system in second order,
which makes it more readably adaptable to
finite element analysis. However, if the
damping is modeled using the GHM method,
the structural dynamic parameters are at
least doubled. This increases the calculation
time in using finite element model. Thus we
are motivated to consider the effects of
model reduction techniques on the GHM
model method to remove the objection of
increased size. In particular we examine
Guvan reduction and Internal Balancing

. 6.9
reduction methods. 6.9

Guyan reduction
removes some of the insignificant physical
coordinates, thereby producing a model that
has smaller mass and stiffness matrices but
is not wusually applied to systems with
damping as it is based on static considerations.
On the other hand the internal balancing
method'”, it is possible to express the
reduced model in terms of a subset of the
original states with additional coordinate
transformation. The model is then converted
to state space form, and is reduced again
by the internal balancing method. However,
in the internal balanced coordinate system,
the states of the reduced model have no
apparent resemblance to those of the
Yae'?? produced a update
version of the internal balancing method

original model.

through another coordinate transformation
derived from the states that are deleted
This reduced model is
expressed by a subset of the original states.

during reduction.

This paper proposes a new technique to

formulate the finite element model of a
sandwich beam by using GHM (Golla-Hughes-
McTavish) internal auxiliary coordinates to
account for frequency dependence. Through
the wuse of auxiliary coordinates, the
equation of motion of undamped mass and
extended to

stiffness matrix form is

damping matrix.

However, this methods all suffer from an

encompass Vviscoelastic
increase in order of the final finite element
model which is wundesirable in many
applications. Here we propose to combine the
GHM method with model reduction techniques
to remove the objection of increased model

order.

2. Formulation of a Viscoelastic Beam

78 the equation of

transverse vibration may be derived by a

Following Inman

straight forward extension of the usual
Euler-Bernoulli beam equation using the
stress—strain relation given by

o(x,t)=Ee(x,t)+ [, g(t-s)ds (1)

where o(x.1) is the stress, xe(o./) is the
distance along the beam, r>0 is the time,

&(x,1} ig the strain, £ is the elastic modulus,
and the kernel g(t—s) describes the hysteresis

(3). for example.

as developed by Christensen
With this modification the transverse vibration
of a viscoelastic beam satisfies the following

equation:

2 2
pAdv,,(x,t)+§‘-z—[ El—a%

+[, 81— T )Wy (x,T)dt }+c = f(x1) (2)

ow(x,t)
ot
where w(x,t) is the transverse displacement,
¢ 1is the mass density, E is the elastic
modulus, [ is the moment of inertia, ¢ is an
external (air) damping coefficient, Ax,t) is
an externally applied load and the subscripts
x and t denote partial differentiation. The
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initial conditions are assumed to all be zero
to simplify the presentation. The external force
is assumed to be an impulse.

The Golla-Hughes-McTavish method requires
the representation of the material modulus
function as a series of (damped) mini-
oscillator terms or internal variables. GHM
has been developed for direct incorporation
into the finite element method. The material
complex modulus can be written in the
Laplace domain in the form

E'(s)= E(1+h(s))
=E0(]+ éa‘" M)

nt o §*+20,0,5+ @}

(3)

where Ep is the equilibrium value of the
modulus, and s is the Laplace operator.
The hatted terms are free variables for
curve fitting to the complex data for a
particular material at a given temperature.
Also, the number of expansion terms, k,
may be modified to represent the high or
low frequency dependence of the complex
terms. The expansion of h(s) represents the
material modulus as a series of the mini
oscillator (second order equation) terms®.
The real and imaginary parts of Young's
modulus for DYAD-606 (SOUNDCOAT) at
temperature 25°C are plotted in Fig. 1.
These are compared to the corresponding
curve fit values, indicated by the *, using
two mini oscillators terms [(n=2 in Eq. (3)].

The constrained optimization algorithm is
used MATLAB’s
Sequential Quadratic Programming (SQP),
to find the best choice of hatted mini-
oscillator terms. It finds the constrained

constr command, a

minimum of a objective function of the
hatted terms ¢, ¢ and o, starting at initial
estimates. That is. the material complex
modulus in Eq. (3) is minimized with
satisfying the constraints to find the optimum
hatted terms of @.f and . This is
"minimize E*(s)
subject to the constraints g (s)<0”. The
constraints is the hatted terms «; in this

mathematically stated as
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case, this will give more accurate results
since they are bounded by some limits. A
method of solving optimization problems
with inequality constraints is to use the
Hessian of the Lagrangian function,

L(x,A)=E"(s)+ il,g, (x)

i=1

This method defines a new vector A4,
called the vector of Langrange multipliers,
and the constraints are added directly to
the objective function. The new cost
function, L(x, 4), is then minimized through
iteration using a quasi-Newton updating
method. This is then used to generate the
Quadratic Programming (QP) sub-problem
based on a quadratic approximation. The
solution of the QP sub-problem is used to

Real value

—— :true value
* :curve-fitting

10' 10
Frequency (Hz)

a) Real value of DYAD-606

10

— : true value
* : curve-fitting

Imaginary value

10’ 10
Frequency (Hz)
b) Imaginary value of DYAD-606

Fig. 1 Two-term GHM modulus function
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form a search direction for a line search
procedure. The minimum along the line
formed from this search direction is generally
approximated using this search procedure or
by a polynomial method
interpolation or extrapolation. The problem

involving

is to find a new iterate xx+1 of the form,

X.=x,+a’d where x; denotes the current
iterate, d the search direction obtained by
an appropriate method and e* is a scalar
step length parameter which is the distance
When the objective
function is minimized after some iterations,

to the minimum.

the approximate values of the hatted terms
of . ¢ and «w are compared with the real
values by giving the tolerance between
them. When the tolerance is satisfied at a
limit by which is given as a small value,
the optimum hatted two mini-oscillator

terms are obtained to be E;=1.18E6, «a
~(87.5 ; 129.6),

IS

263.13), ¢ =[(1344.6
=(14945.5 39999.9]. The important effect of
frequency is that the Young's modulus
always increases with increasing frequency
as shown Fig. 1.

Now the
viscoelastic beam [Eq. (2)] can be rewritten

transverse vibration of a

as the following Laplace domain form:

2 A _
{pAs +es+ E01[1+h(s)]ék‘ }w(s) =£(s) W
Lo s'+2l.ds
h = - n n
with ) Z.:a" $*+20,0,5+ 0} (5)

3. GHM Finite Element Model

The equation of motion for a finite element
in the Laplace domain is

M(s’x(s) — X, — 5%, )+ K(5)x(s)= f(s) (6)

where M is the mass matrix, x(s) is the

displacement vector. xo and X, are the
initial displacement and initial velocity
vectors respectively, fls) is the forcing
function and

K@) =(E" )R + EX®K +..+E")K") (7

Here the variable E*(s) represents the nth
complex modulus in the Laplace domain and

K"is the contribution of the nth modulus to
the stiffness matrix. Considering a single
modulus model with multi expansion terms,
and neglecting initial conditions,

PN A2
= S +20,0.5+ 0,

n 2 PN
Ms*x(s)+ Eo[l +Ya, M]Ex(s) = f(s)
(8)
then the following Laplace domain element
equation of motion is equivalent to Eq. (8)

as follows:

f
0

i | K : (9)
0

Q
°Q
S

.

1
1
¥

n n

are
M0 0
o ZEK o
— 1
M, = o .0
0 0 ZiEK"
L w"
[0 0 0
0 Xhipg o
_ (2}
b, = 0 0
0 0 %EOI?"
- a)’l
EEO(Hia,) —&E,K' —G,EK"
k=1
K,=| -&EK' -&EK 0 0
: o -
| -G,EX" o 0 -aEk"] (10

There is no need to have additional
dissipation coordinates for rigid body modes.
It is also not favorable to add additional
zero eigenvalues to the K matrix for each
previously existing zero eigenvalues. This
can be solved and a linear second order
symmetric form can be obtained by applying
singular value decomposition to the matrix

K and separating the zero from non-zero
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eigenvalues. Using an elastic diagonal

matrix of the nonzero eigenvalues A.and

corresponding eigenvectors R, of the
modulus-factored stiffness matrix and
substituting

z(8) = Rff(s) (11)

we arrive at the final form of the element
viscoelastic matrices:

(M0 0
[24 .
0 ZLEA, 0
—_ 1
M=l g 0
0 0 ZiEA,
o 0 0
0 Xeipa, o
— 1
b.= 0 : 0
0 0 2aA—"§"E0Ae"
L w
I?Eo(niak] CGERG A - GyEyRe s,
k=1
K,=| ~&EAR],  -&EA, 0 0
: 0 0
-a.E AR, 0 0 -d,EA,
(12)

More complete details are given in the
papers by Hughes et. al."®'®. The size of
the additional coordinates z(s) depends on
the nature of the material and on how
many terms are needed to fit the particular

material's loss modulus data.

4. Finite Element Model for Three Layer
Sandwich Beam

In most existing finite element codes, the
hysteretic damping is used to analyze a
sandwich beam. It can be seen the peak
response occurs at a frequency lower than
the undamped natural frequency for the
viscous case, but in the case of the
hysteretic damping the resonant peak

always occurs at the undamped natural
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18 This means the hysteretic

frequency(
damping is independent of the value of loss
factors. As a result, a finite element model
is developed to describe the dynamics of
three layer sandwich beam with viscous
damping using the GHM method in this
section.

Figure 2 indicates the theoretical para-
meters of a three layer sandwich beam in
which the viscoelastic layer is sandwiched
between two aluminum beam layers where
ty, tv, and t., are the thickness of the base
beam, the viscoelastic material, and constraining
layer respectively. It is assumed that the
shear strains in the constraining layer and
in the base beam are negligible. The
transverse displacement w of all points on
any cross section of the sandwich beam are
considered to be equal. Furthermore, the
constraining layer and base beam are
assumed to be elastic and dissipate no
energy. In addition, each layer is considered
to be perfectly bonded together and the
thickness of bond is not considered in this
model.

Figure 3 shows a finite element model! of
a sandwich beam. The element has two
nodes with five degrees of freedom per node
to describe the longitudinal displacements
u,, uy, and u. of the base beam,
viscoelastic, and constraining layer
respectively, the transverse deflection w,
and the slopes Aw/ax of the deflection line.
The important properties of one dimensional
elements are axial and flexural deformations.

557

Viscoelastic Layer t,

............ Base Beam .. ... tb

T

Fig. 2 A sandwich beam with geometric parameters
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The axial displacements of a sandwich beam
can be expressed as the following form of
polynomials in the local variables x and y:

ub=a1x+a2.u‘,=a3x+a4‘uc=a5x+ae (13)

Also, the transverse displacement w is
expressed by the following polynomial:

W=a,X" + @Gx’ + ayX+ ay (14)

The constants {a, a; -*,a)y} are determined

in terms of the ten components of the nodal
deflection vector {g} which is given by:

dx dx (15)
where the subscript 1 refer to displacements
on the left side of the element and the
subscript 2 refers to displacements on the
right side of the element. Therefore, the

deflection {U}= {u,,(x), u,(x),u.(x), W(")}T at any

location (x,¥) inside the i-th element can
be determined from:

{U}=[{Nl}’{Nz}’{Ns}’{N4}]T{q}=[N]{q} (16)

where g is given by Eq. (15) and ([N(x)] is a
matrix of the spatial interpolation functions
corresponding to w(x), u(x). uc(x), wix) as
follows:

- 0 0 0
L
0o 1-Z o 0
L
0o 0 1-= 0
2
0 0 0 1—3;+2L’§
2 3
0 o0 0 x-2.X
[N = L L (17N
) 0 0
L
o X 0 0
L
o o X 0
L 2 3
x X
0 0 0 ——+—2—
L L]

Using the strain-displacement relationships,
the strain vector is obtained as follows:

{e}=ld][V]{g} (18)

where [d) is the linear differential operator.
(L) and (N) can be combined such that

[B]= [d] [N] . Therefore

{e}=[Blqg} (19)

Applying the principle of virtual work to a
finite element of a sandwich beam system
yields

oU, =W, (20)

where J U, and J W. are the virtual strain
energy of internal stresses and virtual work
of external actions.

or

sla) 115, [BY [D][BRv g} = s1a) iii, [NY {b(x.y.0)} @V
+olal i1y, INT{F}av - sla) [1f, pINY V)@V {d}. (21

where J{q} is the virtual nodal deflection
vector, (D) is the rigidity operator matrix,
{b(x,y.t)} is the external body force vector
and {F} is the external force vector. Also,
2 and V denote the density and volume of
element. Factoring out o{qg}. then the total
stiffness matrix and the consistent mass
matrix of a sandwich beam are defined as:

k7= 134, [ [£]Blav
(M]= 115, ANT V]V (22)

Presenting the strain displacement matrix of
each layer, the extension and bending
stiffness matrices of each layer are

obtained. The total stiffness matrix of the

node 1
(0.,0)
9= P, Uy, Uew 5, dogrdna

> Element 4]
J‘

node 2
(1.0)
U U, Uy, Uy, W, divixa

Fig. 3 Finite element model of a sandwich beam
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sandwich beam is given by:

(k)= ,Ec([Ke]’+ (k.])+ K, (23)
where [K.); denote the extension stiffness of
; layer and [(K,); denote the bending
stiffness of i layer (subscript b refers to
beam and ¢ refers to constraining layer).
These stiffness matrices can be written as
follows:

[Ke ]i= EiAi !(i [Be ]:T [Be ]idx .

(k)= EL§, (BT [B,Jdx (24)

[K.,)] denote the stiffness matrix of the
viscoelastic layer which is modified using
GHM method derived in the previous
section

RICARTA (25)
with
) =(Easa] o)1+ £a )

(AR CYRHENH AR (S 26)
where Ay, A, and Ac is cross sectional area
of the beam, viscoelastic layer, and
constraining layer respectively and E,. E.,
and E. are Young's modulus for the beam,
viscoelastic layer, and constraining layer
respectively and I, L., and I. are area
moment of inertia of the beam, viscoelastic
layer, and constraining layer respectively.
Also, the strain displacement matrices (Be);
and (Bs); are given by:

[B1=[¥], [B]=-[V]. (27)

where the subscripts, x and ., xx denote spatial
first and second order differentiation with
respect to x respectively.

The total mass matrix of the sandwich
beam is given by:

M= M, | +|M,]

[ ]T i=E£[ ] [ b]) (28)
where (M.); and [(M,); denote the mass
matrices due to extension and bending of
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the i layer. These mass matrices can be

written by:
[Mel' = PiAiIé ([Ni]r[N,.]}ix ,
[M,) = o4 1 (VT [N, D (29)

where pi represent the density of the i-th
layer, respectively.

5. Brief Introduction of Reduction
Methods

The model reduction methods are briefly
introduced here as they have been
developed in two different disciplines: finite
element analysis and control theory. In the
case of a condensation process or static
reduction, such as Guyan reduction, some of
the insignificant physical coordinates are
removed such as rotational degrees of
freedom at a node point'®. On the other
hand, in the internal balancing method of
control theory, it is not directly possible to
express the reduced model in terms of a
subset of the original states. Hence an

additional coordinate transformation is

introduced and applied #'??.

5.1 Guyan Reduction Method
The eigenvalue problem of mass-stiffness
system can be partitioned as follows:

(PR M EH

K, K M, My])\49: 0 (30)
where the "2” degree of freedom {qgz} are to
be retained if it is critical (excited
externally or controlled) for performance of
the system and the "1” degree of freedom
{q1) are to be removed by condensation.
Thus, we temporarily ignore all mass but
(M22), in order to obtain a relation between
{4,} and {g2). From the upper partition of

the Eq. (30),

{ql}='[Kn]—l[K12]{‘h}=[quz} (31)
0 [T
{7 Jer e -
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where (I) is an identity matrix. Substitution
Eq. (32) into Eq. (30) and premultiplication
by (M7
problem

(x}-2[Dia.} = o} (33)
where the reduced matrices are
KR KI7) ana EETIMIET. (3a)

For a damped system with a damping matrix
(D) and external loads {f}, a straight
forward application of the above transformations

yields the condensed eigenvalue

yields that the condensed damping matrix
and external loads are given by

DPEETIDNr  ana PRI (35)

5.2 Internal Balancing Method
Here the original equations of motion are
taken to be

[ }a}+[DYa}+ [xHa} = {7} (36)

where M, D, and K are the n X n real,
symmetric, positive definite matrices. The
n X 1 vector {q} is the displacement vector.
The overdots denote differentiation with
respect to time. The n X1 vector {f
represents the external forces applied to the
structure. Eq. (36) is converted into the
state space form such that
x(t) = Ax(r) + Bu(t)

Y1) =Cx(1) (37)
[—M"D —M“K} [M"B,}
where A= 1 0 ,B=| 0 ],
C:[Cl Cz] (38)

and will be denoted by (A, B, C, x). It is
assumed that the system (A, B, C, x) is
controllable, observable and asymptotically
stable. The idea used in this method is to
reduce the order of a given model based on
deleting those coordinates., or modes, that
are the least controllable and observable. To
implement this idea a measure of the
degree of controllability and observability is

needed. The useful measure is provided for
asymptotically stable systems of the form
given by Eq. (37) by defining the controll-
ability and observability grammians, denoted
by W. and W,, respectively and defined by

W, = e"BB e"'d1, W,=|re"'CCe*dt (39

! is the state transition matrix of

W, and
W, are the unique symmetric positive
definite

A
where e

the open-loop system x(H=Ax(f.
matrices which satisfy the
Lyapunov matrix equations:

AW, +W, A" =—BB", AW, +W,A=-C"C (40)

for asymptotically stable systems. Moore''”

has shown that there exists a coordinate
system in which two grammians are equal
and diagonal. Such a system is then called
balanced. Let the matrix P denote a linear
transformation of the system into the
balanced coordinate system, which when
applied to Eq. (37) yields the equivalent
system

(1) = A%(t) + Bu(r)
) =Ci(t) (41)

These two balanced systems are related by

i=P'x, A=P'4AP,B=P'B,C=CP (42)
In addition, the two grammians are equal in
this coordinate system:

W, =W, = diaglo,, 0y 03,) (43)

where W.=P'W.P, W,=P 'W,P and 0, s
denote the singular values of the grammians.
Applying the idea of singular values as a
measure of rank deficiency to the controllability
grammians yields a
systematic model reduction method. The

and observability

matrix P that transforms the original
system (A, B, C. x) into a balanced system
(A,B,C,x)can be obtained using the
following algorithm:

{a) The reduced order model can be

H2ASTSBEX|/A 8 A A 1 F, 19983/ 165
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calculated by first calculating an intermediate
transformation matrix P based on the controll-
ability grammians. Solving for W. and find
eigenvalues A, and eigenvectors V. such
that VI W.V.=A,. Then define P,=V.A"2

(b) The coordinate transformation x=Px
vields an intermediate system (A4, B.C x)
calculated by A= P;'AP,, B=P;'B, C=CP,.

(¢) To complete the balancing algorithm,
these intermediate equations are balanced

with respect to W, Solving for W, and find

V, such

that VI W, V,= A,. Let P,= V4,4
(d) Another coordinate transformation x= P,x

vields the desired balanced system (A, B, C, x):
A=P'AP,=P(B'4P)P, B=P'B=P'P"B,

eigenvalues 71,, and eigenvectors

C=CP,=CRP. (44)

The transformation P is given by P1 and P
as P=P) P». Using Equation (44), the balanced

system (A, B, C, %) can be partitioned as

H M RS 1
il 58770 i @)

Deleting the k& least controllable and

observable states, i.e., §d=0, yields

(0= A%+ Bu@t) y,(0=C3.(1) (46)

a reduced model of order (k). This produces
the balanced system which can now be
reduced by looking at the singular values of
the balanced system and throwing away
those coordinates which have relatively
small singular values. This leaves a smaller
order system with essentially the same
dynamics as the full order system.

5.3 Modified Internal Balancing Method

Unfortunately the coordinates left after a
balanced reduction are not a subset of the
finite element nodal coordinates. Thus this
is not simple to relate back to the original
finite element model as is the case in
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Guyan reduction. This problem is solved
by Yae®® who introduced an additional
coordinate transformation to produce a
reduced order model in a coordinate system
consisting of a subset of the original finite
element coordinate system. For structural
control and measurement applications, it is
desirable to provide the designer with a
clear, physical relationship between the

original vector g in Eq. (36) and the
reduced state vector 9?,. Such a relationship

is found by using the fact that the balanced
states are linear combinations of the original
states. Symbolically this is written as:

2n 2n
‘xl:chj‘xj r"':xzn—k=zc(2n~l:)jx1'
J=1 J=1

n 2n
x2n—(k—l) = Zc(zrr—lul)]-xj—) 0 y e Xy, = Z CZn]x]_) 0'
J=t J=t

(47)
where c¢;’s are the coefficients in the linear

combinations of { x x5 -, %3, }. Here the

last k states are set to zero because they
represent the least significant states in the

an. Setting each of these

balanced system
summations equal to zero is equivalent to
imposing k constraints on the original 2n
states, which means that the modal
reduction dependencies on k

number of the original states. In other

imposes

words. one can construct a reduced order
model by selecting (2n-k) states out of the
If the (2n-k) selected
states from the original system are denoted

and the (2n-k) states of

original 2n states.

by x,=[xpxp xp-4l”
the balanced system by x,=[ x, x- 7?2_,,]7,
then the states in J?, are linear combinations
of the states in x,. Thus there exists a
new transformation matrix P, of order
(2n-k) X (2n-k) such that x,=P,x, The

above constraints and the resulting
transformation allow the designer to specify
which nodes of the model to be retained in
the model reduction. In the following it is
shown that the matrix P, consists of certain
original

rows and columns of the



Vibration Analysis of Three Layer Sandwich Beam

transformation matrix P, and that there is
a systematic way of constructing P, from P.
(a) Select the state variables to be retained

from {x, x; -, X3,—+}. Let the indices of

those selected be {j,, -, jou—s)} rows from P.

(b) The transformation matrix P, can be
obtained by selecting first 2n-k columns and
{ji. -, jzn-2)} rOWs from P.

(¢) The reduced order system (4 B,.C. %)

x,(0)=Ax0)+Bu) y0)=Cx (") (48)

is now expressed in terms of a subset x
of the original state vector x, where

A =PAF' B.=PB C=CF" (49)

Thus we have provided a scheme that has
the best feature of each reduction method:
Here we are able to specify which coordinate
to keep and provide a dynamically based
reduction schemes. This will allow to
remove the extended coordinate added to
the system to build a damping matrix.

6. Numerical Examples

A numerical example is presented in order
to demonstrate the use of GHM method in
the finite element analysis of sandwich
beam [Fig. 3] through the three reduction
methods as described above. All the calculations
are performed on IBM PC using MATLAB
for windows by The Math Works, Inc.
Table 1 shows the physical and geometrical
parameters of the aluminum sheet as a base
beam and a constraining layer and the
DYAD-606 (SOUNDCOAT) as viscoelastic
layer. The sandwich beam is equally divided
into four elements so that it has four active

Table 1 Physical and geometrical properties
of the sandwich beam

. Young's . ,
Thickness| Length sl Width | Density | Posson’s
Layer (m) (m) (Pa)us m | mt%; ratio

Aluminum |4064E-4| 0125 | 7.1E10 | 001 2100 | 033

DYAD-606 | 5.08E-5 | 0.125 * 001 1105 | 049
* Depending on temperature and frequency

node points. Each node point has three
degrees of freedom for axial displacement, one
degree of freedom for translational displacement,
one degree of freedom for rotational displacement,
and six additional viscoelastic auxiliary
degrees of freedom. Hence, one element of
the sandwich beam has sixteen degrees of
freedom per node. The performance of
viscoelastic material is affected by the
temperature and frequency which, in turn,
influence the shear modulus and the loss
factor as shown in Fig. 1.

From the above section results, the
equation of motion of the sandwich beam
included viscoelastic layer may finally convert
into a GHM finite element form with two

mini~-oscillator terms as follows:

M, G+Dg+K.q=/, (50)
where the finite element matrices are
[Mr 0 0 0 0
a
0 —Eed, 0 0 0
1
0 0 —-Eo 0 0
Mv = wz
0 0 0 -‘3‘—'-5er2 0
ok
0 0 0 0 —EOA
L ﬂ)z
[o 0 0 0 0
o Mip g 0 0 0
@ a
20,4,
0 0 e 0 0
D, = @, o/l
0 0 0 2"{—‘4'50/;2 0
(2}
0 0 0 0 206 g
L 2]
K Eo(nz:zk) CGiEoRa ey - G EoRe e
K ! _alEOAe Rel 'dlE(JAe| 0
MR Y- 79 Y Rl 0 - @ Ey A,y
t - Gy Eo A, R, 0 0
- a, EgA,, RT 2 0 0
—a]EOReerz _dlEOReerz _]
' ]
0 0 ;
“dlEerz 0 | (51)
0 -dE A |

with the force vectors and coordinate
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fo=lf o 0 0 0 o of,
q=[x 2y 2 Z3 2y Zs 26]T, (52)

Here the values of the hatted constants «a,
§ and w are obtained from curve fitting of
the complex modulus data for the viscoelastic
material provided by manufacturer as described
before. And the submatrices 4, and R, in

GHM viscoelastic element mass, damping
and stiffness matrices are found through

spectral decomposition of the elastic

15) .

component matrices

24 [— 047071]

=22 R,=
A 7. Y070m

0o -1

N2+12/2
11N
Rl V2 24002
e2 -1

0
N2+12/2

1 172
B , I L S (563)
L V2 N2+17/2 ]

5
4r =——  : Original
3t ——= : Guyas Reduction
s
2 2 H
E1f
<
- oH VAAAAA
3
a
s A
=]
-2
-3
-4
-5
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Time (sec)

(a) Original and Guyan reduction model

—me : Difference between Original
and Guyan Reduction Model

Output Amplitude

P O - L L
T —r—r—

o

10 40 50

20 30
Time (sec)

(b) Diiff b two model

Fig. 4 Time response of output of a sandwich beam
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Now, all three procedures discussed in the
section 5. Guyan, internally balanced and
modified internal balanced reduction methods,
are applied to this GHM finite element
model of a cantilever sandwich beam. For
the purpose of demonstration, the impulse
input is placed on the node 2 and the
displacement of the tip (node 4) is measured.
In Fig. 4(a), the time response curves of
the original model and reduced model by
Guyan reduction method are plotted. Here
in order to save the calculation time, the
GHM degree of freedom vector is deleted.
The difference is obtained by subtracting
the output response of the system in the
Guyan reduced model from that of the same
output response in the original system as
shown the dashed line in Fig. 4{(b). A wide
nonzero difference is detected in the transient
region of the response from the output
amplitude difference graph. The Guyan reduction
method does not remove the GHM internal

= : Original
~———: Internal Balanced Model

Output Amplitude
o » w N - (-] - ~ w ES [+

=)

10 20 . 30 40 50
Time (sec)

(a) Original and internal balanced model

_ : Difference between Original 1
and Internal Balanced Model l

Output Amplitud
R S N L .

o
-
o

40 50
Time (sec)

(b) Difference between two models

Fig. 5 Time response of output of a sandwich beam
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degrees of freedom properly through this
technique as it does not take into account
system résponses. Next, the time response
curves of the original model and the model
reduced by internal balancing are plotted
together in Fig. 5(a). Here we are able to
delete the viscoelastic states, that is, GHM
internal variable ones and extension elastic
states at each node. The difference between
the responses of the output amplitude in
original and reduced model by internal
balancing method shown by the dashed line
of Fig. 5(b) is almost zero. In this case,
the difference between the full and reduced
system response lies between an upper limit
of (0.1) and lower limit of (-0.1). In Fig.
6(a) the responses of the original states
and those of the modified internal balanced
Here we have also
removed viscoelastic states and extension
elastic states at each node. Again both

states are plotted.

responses and their difference are plotted in

—: Original
~——= : Modified Internal Balanced

Output  Ampfitude

S b b HM L o 2 Now s
v T

o
o

20, 30 4
Time (sec) 0 so

(a) Original and modified internal balanced model

[ : Difference between Original
and Modified Internal Balanced

OQutput Amplitude
h h b N A e - N w a oo

20 30 40 50
Time (sec)

(b) Difference between two modeis

Fig. 6 Time response of output of a sandwich beam

Fig. 6(b). In Figs. 5~6, it is shown that
the diffegences are nearly Zero in
comparison to the response of the original
state, indicating that the reduced models
are indeed a respectable realization of the
original system. Note also that Guyan method
is not able to remove all of the internal
variables as do the two balanced reduction
methods. One more thing to be mentioned
here, the system response without extension
degrees of freedom of viscoelastic layer is
almost same as that of with those degrees
of freedom through the finite element method.

7. Conclusion

The technique proposed in this paper is a
finite element model of the sandwich beam
using GHM method that has been
implemented to take viscous damping matrix.
Unfortunately, this GHM method generates
undesirable internal variables wused to
account for viscoelastic properties in finite
element modeling. Therefore, three popular
reduction methods has been introduced.
The first method implemented is Guyan
condensation method. However, the Guyan
reduction method loses its fidelity as the
FEM becomes more complex The other
methods proposed here eliminate the need
to increase the order over that of the
original model. Internal wvariables are put
into the model to add viscous damping.
then taken back out to provide the original
order and coordinates back again. The final
method thereby provides a clear, physical
relationship between the states in the
reduced model and those in the original
model. Thus the final reduced model is an
excellent representation of the viscoelastic
system and the reduced and full models
yield similar time responses.
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