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Abstract

In this paper, a robust active noise controller is designed to reduce noise in a small cavity. Noise characteristics in the 
small cavity are nonlinear and we could get its model with considerable modelling errors. The objective of this paper is to 
minimize the effects of these modelling errors and maximize the noise reduction performance. The solution could be 
obtained by the Hg robust control theory. The resulting feedback controller minimizes the Hg norm of the mixed sensi
tivity function, which means the effects of uncertainties of the model are suppressed in the sense of stability and the per
formance is enhanced as a given specification. The designed controller is realized with analog devices such as Op. Amps 
and experimental results show that the controller reduces noise signal sufficiently.

I . Introduction

The noise reduction problem in a small cavity was 
introduced by Olson(1956) and studied in detail by 
Wheeler(1986) and Carme(1987)[ll. Their approach was 
to design a feedback high gain controller. The difficulty 
in their approach was that when they increased a control
ler's gain to reduce noise, the stability tended to be worse. 
Canne introduced a simple R-C compensator to enhance 
the stability of his controller. But his approach was based 
on an ideal case-he assumed he knew the exact electro
acoustic transfer function of the cavity system. Unfo
rtunately, in practice, we can't be sure the exactness of 
the transfer function we have measured. There exist 
situations where nonlinear characteristics in the cavity 
system cannot be measured. So, we can't 응uarentee stab
ility and performance of the control system, unless we 

consider these characteristics in the first step of designing 
our controller. The approach we tried in this paper is the 
Hao robust control method. The robust control 
method had been proposed by G. Zames in 1980s and 
has been studied by many researchers like J. C Doyle, B. 
A Fransis, and K. Glover. In this method, a feedback 
controller minimizes the mixed sensitivity function of the 
closed system, following the designer's specification. So 
we can specify uncertainties of the electroacoustic model 
we measured and design a controller which would remain
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stable within the pre-determinded uncertainty level and 
maximize noise reduction performance. When considering 
the Hoo robust regulating problem, this method could be 
easily applied to the noise control problem in a small cavity.

II. Scheme of noise control in a small cavity

The diagram of the small cavity is shown in Figure 2.1. 
In this system, the input is the noise signal induced by 
external noise sources and the output is the error signal 
detected by the error microphone. The control signal is 
fed back into the cavity through the control speaker. 
Then, the control scheme can be simplified as in Figure 2.2.

In Figure 2.2, G is the transfer function of the 
electroacoustic path from the control speaker to the error 
microphone. K is the controller which will be designed, d 
is noise signal and e is error signal. The closed loop trans
fer function from noise signal to error signal is given by

Small cavity

Figure 2.1 The Small Cavity System(qn: noise signal, qc: control 
signal).
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Figure 2.2 Block diagram of the ANC system for the small cavity.

E(s) = ] (2_ 1)
D(s) - 1 +K(s)・G(s)

In this paper, the objective is to minimize ||E(s)/D(s)||a)- 
This seems to be easily obtained by Eq. (2니). That is, 
when I K(s) I is increased to infinity ||E(s)/D(s)l|ilc goes to 
zero. But, just the increase of the gain of the controller 
leads to the poor stability of the closed system. Thus, 
another approach is needed for more reliable controller. 
Let's re-interpret the design objective. When considering 
the sensitivity function of the system, Eq. (2-1) is equal to 
the sensitivity function of the dosed system. This is expre

ssed in Eq.(2-2).

器=l+K(；).G(s) =S(s) (21)

Then, the control objective is to minimize llS(s)l|g and it 
means that our noise reduction problem is identical to the 
well-known regulating problem. Finally, we will discuss 
about uncertainties in the system. In practices, we cannot 
avoid modelling errors when modelling the electroa
coustic path, which includes nonlinear characteristics of 
the speaker, time delays of the signal, and many 
eigenmodes of the cavity. One method to deal with this is 
that, after we get a model of the path as exact as poss
ible, we try to suppress the effects of the unmodelled 
dynamics. The Hg robust regulating method solves this 
problem.

ID. The Hoc Robust Control Problem and its 
Solution: Theoretical Background", 5, 6]

Theorem 1 A necessary and sufficient condition for robust 

performance is

IIIW, • SI +|W2 - T||L< 1 (3-2)

where S and T are sensitivity and complementary sensi
tivity functions, and W2 are weight functions.
Proof: See the references[5].
The above theorem is the combined version of two theorem. 
One is for the stability, l|Wt - Silco< 1. and the other is 
for the robustness, IIW2 - Til® < 1. That is, the desired 
controller would shape the sensitivity and the comp
lementary sensitivity functions based on the associated 
weight functions. The left-hand side of the inequality is 
called the mixed sensitivity function and the pro미em to 
minimize this function is called the Hg robust optimal 

control problem expressed as follows

|||wt - s| +IW2 • T|"〈y (3-3)

Let's represent the block diagram of the standard feedback 

system as shown in Figure 3.1.

Figure 3-1 Block Diagram of Standard Feedback System.

The plant, P is represented in state space form as

x(t) = A - x(t) +B】• w(t) +B2 - u(t)
z(t) — Ct • x(t) +Dn • w(t) +D12 • u(t) (3-4)
y(t) = C2 , x(t) +D^ • w(t) +D22 , u(t) 

and its transfer function will be denoted as 

p(s):=(p；： S)

Most systems have unmodeled characteristics. In this 
paper, the model is expressed as a multiplicative uncer
tainty model as shown in Eq.(3-1).

'a & B2

G Dll D12
c2 D2I D22

I)

G = (l +AW2) - G (3-1)

1) [•c 音] means D 4~C(sI—A)-1 B.

If y= —K(s)u is connected from y to u, the closed-loop 
transfer function from w to z will be denoted
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T(P, K)：-Pn +P12K(I-P22K)-|P21. (3-5)

The Hg control problem is to find a controller that 
makes the closed-loop system internally stable and 
minimizes ||T(P, K)IL. We will find a controller K, such 
that

||T(P, K)lh<y (3-6)

and reduce / until K will not exist.
For the controller satisflng Eq.(3-6), the following 

conditions shoud be satisfied.

Cl. (A, Bi, C2) is stabilizable and detectable.

C2. £)i2 and Z)2i are full rank.
C3. A scaling and a unitary transformation enable us to 

assume

0,2 = (°], D2I = [0 1]

D||= Die Dm2
Dm Dm2.

C4. rank c"" p2 ) = rank(x) +rank(u), for all co

C5. rank 厂’헤 1 = rank(x) + rank(y), for all co

Cl is for stabilizability of P by output feedback. C2 is for 
nonsingular control problem. C3 is for computational 
simplicity, so it is not necessary. C4 and C5 are for stab
ility solution of Riccati equations.

Now, define

R = D；.Dl.-(yQI ?) whereD|. = [D” D12]

R=D., D.i -(吁 J) where D” =[D” D12]T 

and suppose there exist solutions to the following Algegraic 
Riccati Equations

J비 （一為 二）Bl

Yoo = Ric (c 「BiD.'i

C]}

The state feedback matrix, F and output estimation matrix,
H are defined as

F= -R-'[D；.C, +B'X3니Fm FI2, F2]T
H= 니禺 D： +Y” C']R시 = [Hn, H12, H고]

The main res미t is stated in terms of the above matrices.

Theorme 2. For the system described by P(s) and satis* 

fyin홍 the conditions C1-C5：

(a) There exists an internally stabilizing controller K(s) such 

that ||T(P, K)||ao < 7 and only if

(i) y〉max(히Dim, Dim], 히皿”, D n12]) and

(ii) Xg 그: 0 and 느 0 such that p(XQ0YQ0)< y2.(p(*) 

denotes the largest eigenvalue.)

(b) Given that the conditions of part (a) are satisfied, 
then all rational internally stabilizing controller K(s) 
satisfying l|T(P, K)||b < 丫 are given by

K = T(Ka, d>) where is any stable, proper, and rational 

function such that 10새 < 匕 where

' A Bi B2

Ka = Cl Du D12
.Ci D21 0

Du = ~D1|2iDHn(y2I—Dim Dim)-，Dip-Dm2

D" D[2，= I—Du기 (^21 ~D]]n Dnil)-1 Dh21

D기，D” = I T)|ii2(y2l — Dm】 D||h)t Dim

and

B2 =(B2 +B}2)D|2

C2=—S(C2+F|2)Z

B= -H2 +B2 D哥 Du

C = F2Z+Dh D；/ C2

A = A+HC+B2D?2i g

and

Z규(I—7-2丫8乂00厂| .

Proof： See the reference^, 6].
The above theorem solves the Hg robust control problem 
and we will use the result to design the desired controller 
to minimize noise signal. The left problem is to form the 
standard feedback system with the block diagram shown 
in Figure 2.2 and will be discussed in the next section.

IV. The design of the active noise controller

4.1 Modelling of the transfer function G

To get a model of the electroacoustic path of the cavity 
system, this paper used series of sinusoidal signals which 
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excite the system and saved the magnitude responses 
measured with the error microphone. We divided the fre
quency range logarithmically from 100Hz to 5kHz into 
200 frequencies and used sinusoid siganls of these 
frequencies. Figure 4.1 shows the measured data. Based 
on the measured data, the model of the system can be 
obtained by Yule-Walker algorithms［이, one of the least 
square methods.

Fig나re 4.1 Frequency characteristic of G.

ARMA Mod«l(dott»d) and Reduced Model(solid)

Fig니re 4.2 Frequency characteristics of the mod이 and the 
reduced-order model.

As shown in Figure 4.1, the characteristic of a small 
cavity have the complex characteristic at the frequency 
over 1kHz. There are five dominant modes which play 
important role on the characteristic. The modified 
Y미e~Walker method is used to model the transfer chara
cteristic.

The obtained model is shown in Figure 4.2. But, its 
degree is too high to handle. So, we reduced the order of 
the model to 11th.

The reduced-order model is expressed in Eq.(4-1),

G(s) =
NumG(s) 
DenG(s)

(4-1)

where

NumG(s) = 94.5e6 • s8+5.48e!2 • s7+1.65el7 - s6
+ 3.38e21 • s5 +3.43e29 • s** +1.57e33 • s3 +4.02e36 • s2
+ 5.2e39 • s +2.615e42
DenG(s) = s” +5, 42e3 • s'° +1.81e9 - s9 +9.38el2 • s8
+ 5.52el7 • s7 +2.56e21 - s6
+ 3.27e25 • s5 +1.09e29 • s4 +4.68e32 • s3 +9.39e35 - s2
+ 1.2Ie39 • s +1.61e42

4.2 The design of the controller for the small cavity
As explained in the section 2, the purpose of this paper 

is to minimizes the mixed sensitivity function of the system 
keeping a robustness. For noise control in the small cavity, 
we defined specifications of the controller as follows

First：there exist modelling errors and nonlinear chara
cteristics in the cavity model, especially in the high 
frequency ranges, so the magnitude of the comp
lementary sensitivity function should be lower than 
20 dB at those frequencies to reduce their effect.

Second: most of the noise signal induced in the small cav
ity is below 1kHz. So the magnitude of the sensi
tivity function is below as far as possible below 
1kHz.

These specifications are expressed as weight functions as 
following.

100( 100000 -S +1)3
(4-2a)W| -■

(1 s + 1)3 '
V 10000 ，

\約=-
10000 '

5 +1)1
(4-2b)

____ 1 1

300000

Now, we will form the standard feedback system to 
solve the problem. In the cavity system, the input and 
output signal is the noise signal and the measured error
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signal, respectively, and they are related to w and y in the 
standard feedback system, respectively, u is the controllers 
output. The problem is z. This should include the infor
mation of our specifications, which is related to the sensi
tivity and the complementary sensitivity functions. There
fore, we formed the standard feedback system shown in 
Figure 4.3.

Based on the above system, we solved the robust 
control problem using Robust Control Toolbox of Matlab 

[7]. The obtained controller is

댜gure 4.5 Bode plot of sensitivity function and its complemen
tary sensitivity function.K(s) =

NumK(s)
DenK(s)

(4-3)

where

NumK(s)
= 3.51e5 - s17 +9.31el3 • s'5 +9.02el9 - s15 +3.13e25 • s14 
+4.06e30 • s13 +2.79e35 • s12 +1.25e40 - s니 +4.25c44 • s'° 
+ 1.05e49 - s9 +1.51e53 • s8 +2.55e57 , s7 +1.58e61 • s6 
+ 1.37e65 • s5 +4.83e68 - s4 +1.83e72 • s3 +3.31e75 • s2 
+ 3.14e78 • s +1.29e82

DenK(s)
= s17 +6.42e6 • s16 +9.00el5 - s15 +4.25e21 • s14
+ 8.41e26 • s13 +8.81e31 - s12 +4.91e36 • s" +1.74e41 • s10 
+4.34e45 - s9 +7.92e49 - s8 +1.05e54 • s7 +6.74e61 - s6 
+ 3.12e65 • s5 +9.53e68 • s4 +1.81e72 - s3 +1.90e75 • s

The frequency response of the designed controller is 
shown in Figure 4.4. In Figure 4.5, the sensitivity function 
below 1 kHz is less then 10-2 which means that the noise 
signal can be reduced to 1/100 times. In the region of 
high frequency, the magnitude of the complement sensi
tivity function is getting smaller. This means that the 
effect of uncertainties by the modeling error would 
be reduced.

V. Experimental Results

For experiment, the designed controller expressed in 
Eq.(4.3) was realized with operational amplifiers and the 
external noise source was simulated using another loud 
speaker. Figure 5.1 shows the experimental system diagram. 
We simulated noisy environment using noise signals 
generated when vehicles runs and a crane works in 
constructual mid. The output signals of the microphone 
was measured in both cases when the controller was on 
and off to see the controller's performance.

Figure 5.1 Block Diagram of the controller.

Agure 44 Frequency characteristics of the designed controller.

Figure 5.2 and 5.3 show noise signals and their spe
ctrums. In these Figures, the dotted signal represent the 
measured noise signal when the controller was off and the 
solid signal when the controller was on. As one can see, 
in the range between 100Hz and 700Hz, th noise signals 
were reduced by more 나lan 20dB. Therefore, 나le designed 
controller could be used as the active noise controller for 
the small cavity.
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Figure 5.2 Noise control of Car Traffic Noise and its spectrum.

Figure 5.3 Noise control of Crane N이se and its spectrum.
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VI. Conclusion

This paper studied on the robust active noise controller 
for a small cavity to reduce noise signal induced in the 
small cavity. In the small cavity, there are nonlinear 
characteristics and modeling errors, which we supposed as 
uncertainties. By solving the robust control problem 
under these uncertainties, a robust controller could be 
designed to minimize the norm of the mixed sensi
tivity function, which implied that the noise controller 
was designed. The designed controller was implemented 
with analog Op-Amps and it showed good performances 
in reducing noise signals in the sm시 1 cavity within the 
100Hz-700Hz ranges.

References

1. P. A. Nelson and S. J. Elliot, Active Confr이 of Noise, 
London: Academic Press, 1992.

2. C. Taejin and C. Chansoo, "Feedback Control of the Noise 
in a Small Cavity," IEEE Singapore International Conference 
on Intelligence Control and Instrumentation^ pp 132-137, July 
1995, Singapore.

3. L. L. Beranek, Noise and Vibration Control, McGraw-Hill,

4. K. Glover and J. C. Doyle, **State-space formulae for all 
stabilizing controllers that satisfy an Hg-norm bound and 

relations to risk sensitivity/ System and Control Letters 11, 
pp. 167-172, 1988.

5. J. C. Doyle, B. A. Francis, and A. R. TannenBaum, 

Feedback Control Theory, Macmillian Publi아ling Company, 
1992.

6. K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal 
Control, Prentice Hall, 1996.

7. Andrew grace, Alan J. Laub, John N. Little, and Clay M. 
Thompson, Robust Control System Toolbox '■ For Use with 
Matlab, The MathWork, Inc. 1992.

8. M. E Van Valkenburg, Analog Filter Design, CBS College 
Pubhshing, 1982.

9. T. Soderstor m, System Identification, Prentice Hall, 1989.
10. Tae-Jin Chung, Chan-Soo Chung, and Ho-Seung Kim, 

“Noise Transfer Characteristic in a Small Cavity," Proc, of 
Joint Conference of KIEE and KITE, pp 246-249, 1995.

1971.



A Design of the Robust Controller for an Active Noise Control 9

▲Tae・Jin Chung
He received the B.S. and M.S. 

degree in Electrical Engineering from 
Soongsil University in 1994 and 1996, 
respecitvely. Since March 1996, he 
has been a student in Ph.D. course 
in Soongsil University. His current 
research interests include Active Noise 
Control, Robust Control, and System 
Identification.

AHak-Joon Oh

■
 He received the B.S. and M.S. 

degree in Electrical Engineering from 

Soongsil University in 1993 and 1995, 
respectively. From March 1996, he 
has been a student in Ph.D. course 
in Soongsil University. Also, he is a 
research engineer in Daewoo Motor 
Technical Center. His current research 

interests include Active Noise Control, Digital Signal 
Processing, and System Identification.

AChan -Soo Chung

He received B.S. d^ree in Electrical 
Engineering at Seoul National Uni
verity in 1972. and M.S. and Ph.D 
degrees both in electrical engineering 
at Seoul National University in 1980 
and 1987, respectively.

From March 1972 to July 1975 he
had been a member of the teaching 

staff in Naval Acadamy. From August 1975 to February 
1981 he had been an Associate Professor in Ulsan Junior
Colloge of Technology and Dongyang Junior College of 
Technology. Since March 1981, he has been a Professor 
of Electrical Engineering at Soongsil University, Seoul, 
Korea. His current research interests include Active Noise 
Control, Digital Signal Processing, Fault D야ection and 
Diagnosis.

▲Chi-Hyung You

He received the B.S. and M.S. 
degree in Electrical Engineering from 
Soongsil University in 1988 and 1991, 
respectively. From March 1995, he 
has been a student in Ph.D. course 
in Soongsil University. Alos, he is a 
Professor in Soongsil Computer Aca-
damy. His current research interests 

include Digital Signal Processing, Fault Detection and
Diagnosis, and Active Noise Control.


