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Abstract

Given a noisy signal sampled at equispaced points with white noise, we consider problems where the signal to be re­
covered is known to be positive; for example, images, chemical spectra or other measurements of intensities. Shrinking 

noisy wavelet coefficients via thresholding offers very attractive alternatives to existing methods of recovering signals from 

noisy data. In this paper, we propose a method of recovering the original signal from a corrupted noisy signal, guaran­
teeing the recovered signal positive. We first obtain wavelet coefficients by thresholding, and use a nonlinear optimization 

to find the denoised signal which must be positive. Numerical examples are used to illustrate the performance of the pro­
posed algorithm.

I. Introduction

The objectives of signal processing are to analyze ac­

curately, code efficiently, transmit rapidly, and then to re­

construct carefully at the receiver the delicate oscillations 
or fluctuations of this function of time. In fields ranging 

from Extragalactic Astronomy to Molecular Spectroscopy 

to Medical Imaging to Computer Vision, the recovery of 

a signal or image from noisy data is imperative. Given a 
noisy signal, we focus only on problems where the signal 
to be recovered is known to be positive; think of ima­
ges, chemical spectra or other measurements of inten­

sities.
Wavelet theory has inspired the development of a 

powerful methodology for processing signals, images, and 
other types of scientific and technical data. Wavelet 

transform allows better resolution in time and frequency 

compared with the classical Fourier transform, and thus 
allows one to see "the forest and the trees''. This feature 

is important for nonstationary signal analysis [1], [2].

Recently, it has been shown that wavelet shrinkage 
offers very attractive alternatives to existing methods of 
recovering signals from noisy data, where wavelet shrin­
kage refers to reconstructions obtained by wavelet trans­
formation. This is then followed by shrinking the empir­
ical wavelet coefficients towards zero, and followed by 

inverse transformation [3], When the signal to be reco­

vered is known to be positive, the prior knowledge of 
positivity should be built into a reconstruction algoritlim 
[4], If we do not incorporate such side condition into 

wavelet shrinkage, the reconstructed signal may be negat­

ive, which then consequently leads to an infeasible sol­
ution.

Figure 1. A Bumps function:Plot of (/,, /(^)), i~ 1, ...t n.

In this paper, we propose a method of denoising a po­

sitive signal. For a function h, let h、= 2 壮h(앙t、— 命 

where Z. Let us suppose that the inhomogeneous 

wavelet basis is derived from {©扁「左 e Z} and 

((/> j k：k^ Z, 丿 느/()}, where and are a scaling fun­

ction and a mother wavelet, respectively. Then, a signal 

f has a formal expansion

e)= ¥ ai"/ 複 £ 们m如).
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The vast majority of the wavelet coefficients of the 
function given in Fig. 1 are zero or effectively zero and 

the large coefficients occur exclusively near the areas of 
major spatial activity [3]. Wavelet shrinkage uses this 

idea to select wavelet basis functions which are signif­

icant in reconstructing a signal. We use this fact to find 
a set of wavelet basis functions and then consider the 

denoiser in the form of

exp(¥笊"房+富「¥机心分) ⑴ 

where the wavelet basis functions are those wavelets 

with their absolute values of the corresponding wavelet 
coefficients greater than a threshold. The parameters 

G九为 and 3,” are estimated by minimizing the re­

sidual sum of squares which will be shown in section 
2.2. We consider the denoiser in the form of equation 

(1) since it is automatically positive. According to a 

simulation carried out in this paper, the proposed deno­

iser performs better than the wavelet shrinkage if the 
sought-after signal has several regions where it is close 
to zero such as the Bumps function shown in Fig. 1.

This paper is organized as follows. Section II de­
scribes wavelet shrinkage and the proposed denoising 
algorithm. Experimental results are given in Section III.

II. Recovery of Positive Signals

Shrinking noisy wavelet coefficients via thresholding 

offers very attractive alternatives to existing methods of 
recovering signals from noisy data. This new method, 
wavelet shrinkage, has theoretical properties that by far 

surpass anything previously known. This method, wavelet 
thresholding method, works well in problems ranging 
from photographic image restoration to medical imaging.

Suppose we are given a noisy signal

= + a Ei (i = l....... n) (2)

sampled at the equispaced points tj — Hn on [0, 1], 

where the e, is a white noise and f a function defined 

on the unit interval [0, 1], is an unknown signal which 

we would like to recover. Often we have a constraint 
indicating bounds on the signal; that is, the solution 

cannot have negative values. This constraint is extremely 
powerful. It is usually the easiest of the amplitude 
bounds to implement and is sometimes inherent in the 

way the solution is represented. We also consider spatial 
bounds; the signal is known to vanish over certain re­

gions within well-defined limits. In this paper, we as­
sume this spatial bounds as the unit interval [0, 1] for 
notational convenience. In practice, this type of constraint 
usually exerts a weaker influence on the solution than 
the amplitude bound.

2.1 Wavelet Shrinkage
The motivation of wavelet shrinkage is twofold [3]. 

First, for a spatially varying signal, most of the action is 

concentrated in a small subset of (丿，命—space. 

Secondly, under the noise mod이 underlying (2), the 

noise contaminates all wavelet coefficients equally.

Given <p and one inay coinpute the wavelet co­

efficients by the formulae

“財=+席们盘切,and緋丄=+冬如0)：皿

Because of the spatial localization of wavelet bases, 

the wavelet coefficients w 九 k allow one to easily answer 

the question 'is there a significant change in the signal 

near 命？' by looking at the wavelet coefficients at 

levels /— 7 at spatial indices k with k2 to-

If these coefficients are large, the answer is 'yes'. Typi­
cally the large coefficients occur exclusively near the 

areas of major spatial activity. This property has lead to 
the selective wavelet recovery [3].

Motivated by the fact that only a very few wavelet 
coefficients contribute to the signal, we consider the thre­

shold rules that retain only the observed to exceed a 

multiple of the noise level. Define the 'hard' and 'soft' 

threshold nonlinearities by

你w,S)=如｛"知二伴盟修% ⑶

and

w— 6 if w> <5
Z7s(*")  = sg#(z0)(" — S) + = 0 if I허MS (4)

—u)-V S if 15

For example, if we use the hard threshold and if a 

wavelet coefficient is greater than 8、then it is unchang- 

edjhowever, if it is less than or equal to & then we do 

not use it in the wavelet expansion.

Given a set A of (/, R) pairs for which the wavelet 

coefficients 病九「s are not zero» the recovered signal via 

wavelet shrinkage is defined by



32 The Journal of the Acoustical Society of Korea, Vol. 17. No. 1E(1998)

WS(f) =圣 寫 砍也"，Y[0,H・(5)

Here it can be seen that all of the coefficients u are 

used. .This provides reconstructions by selecting。끼y a 
subset of the empirical wavelet coefficients.

A signal f can be positive when it is expanded as in 

the equation (1). However, it may not be positive over 
the interval [0, 1] if we limit the expansion at a re­

solution level 力.This argument applies to the wavelet 

shrinkage in that the denoiser in (5) may have negative 
ordinates once we apply the threshold rule (3) or (4).

2.2 Positive Denoising
Our denoising method with positivity is to s이ect the 

indices (_/, k) based on wavelet shrinkage and then to 

approximate the logarithm of f in the form of (1). 

Hence, our method is a postprocessing of wavelet shrink­
age under the assumption that wavelet shrinkage should 

provide us with the important coefficients and then 

taking their exponential could improve WS.

Define A© to be the set of indices (;0, k) for which 

小"does not vanish on [0, 1] and to be the set 

of double indices (;, k) for which 让* is not zero. 

Let 4 be the union of A© and 71 护 For 

we let 灼(f) = 2'"©(2”—龙} and let 奶= 火沖一灯 

We let (B^} AeA denote the set of wavelet basis fun­

ctions:

{•&} aga = {奶 : 人 e 시 U {奶 : A e 们}

Let be the parameter corresponding to and let 

0=(0a)人mi denote the vector of elements 。人.For 

t e [0, 1], let

f(i ； 0)=exp[£ 耳(£)]. (6)

We use f{t \ 0) as the postprocessor of wavelet shrin­

kage so that it is positive. Consider the optimization pro­
blem of minimizing the following residual sum of squ­

ares

/(0)= Zb,-六4 ；仞卩. ⑺

Note that since yI and t{ are fixed observations, the 

residual sum of squares is a function of 0. We shall 

denote by 0 , a least squares estimate (LSE) of 6, that 

is a value of 6 which minimizes J( Once we find 

the LSE Q , our reconstructed signal at each t [0, 1] 

is defined by

=f{t ; ?).

If the noise is a white Gaussian noise with zero-mean 

and the signal is represented by (6) with true parameter 

0*,  then the LSE is equivalent to the maximum likelihood 

estimate. Assume that 乂 = /(上俨)+弓 and &〜1V(O, 7扌) 

with unknown parameter 0*  and known a. Since the 

samples are independent, we have a likelihood hmction 

of given by

以”=(그骸)膈[一婴].

Let us observe that maximizing L( 6) with respect to 

3 is equivalent to minimizing J( with respect to 6. 

Hence, the LSE of 6 is also the maximum likelihood 

estimate of 矿.On the other hand, we can justify our 

denoisei in the sense of least squares even when the 

noise is not Gaussian.

To find the LSE 0 , we use a modified version of 

the Newton-Rapson method. Differentiating the equation 

(7) provides the normal equations.

容(y,-”,；8))/("9)Bq)= 0 (8)

for A^A. Let S( Q) be the vector whose /{-th element 

is the left hand side of (8) and let H) be the Hes­

sian matrix of 4(0、) whose (A, 33-th element is given 

by

爲针=畧(2”,；仞-y,)码⑴力⑴

It can be seen that the Hessian matrix H( 0) is not ne­

cessarily positive definite.

Our method of computing 0 is to start with an in­

itial guess 6° and iteratively determine X according 

to the form 니a

矿 + H-\ o”)s(矿、). (9)
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Since the LSE 0 should satisfy the normal equation

S( 0 ) = 0, the Taylor expansion gives

0= S( 7 )p S(为)一H(切)(怀-0「)，

where Q is a vector which is close to 0 . The 
formula (9) uses this approximation iteratively. During 

the Newton-Raphson iteration, we use H&(、0 ) instead 

of H( 0) for due to the fact that H( 0) may

not be positive definite at early stages, where Hq( 0) is 

the matrix whose (4, /矿)Th element is given by

席 /(/,■

The heuristic for this usage of Hq instead of H at 

early stages is as follows. However, if y, 슥; f{tt ; 0허) 

for some m, then H( is approximately equal to 

Hq( 0m)- Since for any nonzero vector

00 HK 0)00=^ S(t, ; 00)7( t, ； 0)〉0,

the matrix Hq ( 0) is positive definite for each 0.

Now we employ the step-halving, in which is 

determined from 矿 according to the formula

伊宀=em)t

where r is the smallest nonnegative integer such that

/(矿‘ + 2 ~r 硏)S(矿')))< J( 6严).

We stop the iteration when | 矿、)一 4(、r

for a sufficiently small number i.

III. Experimental Results

To examine the performance of our denoiser Pt) and 

to compare it with the wavelet shrinkage denoiser WS, 

we carried out a small simulation study. The main pur­
pose of this simulation is to show how much impro­
vement can be obtained by imposing positivity when we 
use the same set of wavelet basis functions. As we 

pointed out above, our positive denoiser PD is anticip­

ated to perform better than the wavelet shrinkage if the 
sought-after signal has several regions where it is close 
to zero.

(b)

0.0 0.2 0.4 0.6 0.8 1.0
(C)

Figure 2. A Bumps function and noisy signals, (a) Plot of 
(/；, /(A)), i=l, •••. n.

Plots of (t;, y;), : (b) when SNR-6, (c) when

SNR=4, and (d) when SNR=2, where the x -axis denotes t.

In this simulation the noisy signal is in the form of 
the equation (2) where the sample size selected is 

n = 2048;we choose M=7 and r— 1O~10- We use the 

following Bumps function: 

八。=為奶K((一")/"),

where K(f) = (1 + |f|)=(乌)=(.l, ,13, .15 ,.23, ,15, 

.40, ,44, .65, .76, .78, .81),(姐=(4, 5, 3, 4, 5, 4.2, 

2.1, 4.3, 3.1, 5.1, 4.2), and (的)=(0.005, 0.005, 0.006, 

0.01, 0.01, 0.03, 0.01 0.01, 0.005, 0.008, 0.005). The 

Bumps signal was used in [3]; this signal has nonnega­
tive values and has several peaks. Fig. 2(a) shows the 

shape of this Bumps function.

The Bumps signal f is discretized to n equally 

spaced points in the interval [0, 1], in such a way that 

t,~ ijn, i~\, .... n and a white Gaussian noise is 

added to the signal /. Let sd(、f、} be the standard 

deviation of the n numbers {/(£ )： £=1,…，散}, The 

statistical signal-to-noise ratio is defined by

S-SNR = -^^-. 
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We took the three values of a determined by S —SNR 

= 2,4,6. In Fig. 2(b), we present three noisy sigiwls 

corresponding to three different o's determined such that 

S—SNRs2,4, and 6-

Figure 3. (a), (c) and (e) display (&"PD(£)), /= 

and (b), (d) and (f) show , i= 1,
S-SNR of (a) and (b) is 2, S-SNR of (c) 

and (d) is 4 and S-SNR of (e) and (f) is 6.

Fig. 3 shows the denoised signals H)'s and WS's. 

Here we use <f)and 寸 with support [0, 7] which were 

discovered by Daubechies [1], To compute them at a 

point t [0,1], we first compute and (/)at some 

points by Matlab and use a piecewise constant inter­

polation to compute them at t. We use the hard thres­

holding rule (3) to select the important wavelet coeffic­

ients. To apply z。，the noise level a is estimated 

as cr, the median absolute deviation of the wavelet 

coefficients at the finest level J, diSded by 0.6745 [3]. 

The low-resolution cutoff is 元=1 and the finest level 

is J— 10- The threshold is chosen by 2V (logM)/n a-

We can observe that ft) performs better than WS 

when the Bumps signal f is near zero; WS appears to 

be more wiggly than Pth Furthermore, it can be seen 

that PD captures the peaks better than WS. As S-SNR 

increases, the shape of each denoiser becomes closer to 
that of the true Bumps function.

To carry out an object test of the behavior of PD 

with WS, we need criteria for the performance of esti­

mators. If is the denoised function value at t, and

PD and WS as S-SNR changes.
Table 1. This table shows RMSE, MAD, and MXDV of

S-SNR
RMSE MAD MXDV

PD ws PD WS PD WS

2 1.36 2.96 0.67 1.87 11.15 23.56
4 0.67 1.80 0.34 1.18 8.96 14.46
6 0.50 1.42 0.28 0.94 5.61 13.83

n the sample size, then one can use RMSE = 

C爲(2(")- 以))七 However, an estimate can have 

low RMSE but appear noisy to the eye, especially near 
the peak points. To capture this aspect we also used the 

mean absolute deviation (MAD) and the maximum devi­

ation (MXDV) criterion, where MAD=+ S | 丁(匕)一/(")| 

and MXDV = max，-1 _?(£) — /匕)|. As in Fig. 3, our denoiser

PD performs better than WS. Note that the peaks are 

captured better by PD than by WS on the basis of the 

MXDV criterion. These criteria have been used in [5] 
and [6].

IV. Conclusion

In this paper we propose a method of denoising a 

noisy signal usin옹 positivity of the signal. Sim니ated data 
show that the proposed method performs better than the 
wavelet shrinkage method under the positivity constraint. 
It wo니d be worth extending our method to two dimens­

ional image. Since an image is positive, we anticipate 
that our method for two dimensional image will provide 
a better algorithm than the usual denoising algorithms.
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