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Abstract

A fuzzy logic filter is constructed from a set of fuzzy [F-THEN rules which change adaptively to mintmize some crilcrion

function as new information becomes available. This paper generalizes the fuzzy logic filter and iU's adaptive filtering algor-

ithm to includc complex paramcters and complex signals. Using the complex Stone-Weicrstrass theorem, we prove that lin-

ear combinations of the fuzzy basis functions are capable of uniformly approximating any complex continuous funclion on

a compact set 1o arbitracy accuracy. Based on the fuzzy basis funclion representations, a complex orthogonal least-squiares

(COLS) leamming algorithm is developed for designing fuzzy systems bascd on given input-output patrs. Also, we propose
an adaplive algorithm based on LMS which adjust simultancously filter paramelers and the parameter of the membership

function which characterize the fuzzy concepts in the [F-THEN rules. The modeling of a nonlinear communications chan-

nel based on a complex fuzzy filter is used to demonstrate the effectiveness of these algorithm.

I. Introduction

In recent, the fuzzy logic filter have ever-increasingly
been applied to many diverse fields in signal and control
processing(1](2]3][4). The fuzzy adaptive filter, which is
consiructed {rom a set of changeable fuzzy IF-THEN rules
has drawn a great deal of altention because of s univer-
sal approximation ability. These fuzzy rules come either
from human experts or by malching input-output pairs
through an adaptation procedurel5]. We thercfore would
like to apply this non-linear adaptive algorithm 1o the sig-
nal processing problems. Some examples of application of
fuzzy filter to signal processing include classification and
signal prediction, communications channel equalisation,
and nonlinear systems modeling and identification. Most
available fuzzy filters are real-valued and are suitable for
signal processing in real multidimensional space.

In some applications, however, signals are complex
valued and processing is done in complex multi-dimen-
sional space[6][7I(R]. An example is the equalisation of
digital communications channcls with complex signaling
schemes such as quadrature amplitude modulation

(QAM). For complex signal processing problems, many
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existing fuzzy filters cannot directly be applied.

The present study proposes a complex fuzzy adaptive
filtler with changeable fuzzy IF-THEN rules, which is an’
extension of the real fuzzy fitter. Specifically, membership
function of this is real. The inputs and outpuls as well as
parameters of the filter are all complex-valued. The filter
can be viewed as a mapping from the complex multi-in-
put onlo the complex onc-cutput. When both the filter
inputs and desired outputs are reduced to real-valved,
this complex fuzzy flter degenerales naturally into the
real fuzzy filter,

An advantage of this complex fuzzy filter is that lincar
leamming laws can be derived as in the real casc. Two
learning algorithms, the complex orthogonal least squares
algorithm and complex ILMS algorithm are presented.
The COLS algotithm is a batch learning algorithm and it
constructs fuzzy rulc in 9 rational way until an adequate
performance s achieved. The complex LMS algorithm
can convenicntly be implemented as a recursive learning
algorithm. These two algorithm are derived as natural
extensions of their rcal counterparts. The adaptive algor-
ithm based on least mean squares (LMS) adjust filter co-
efficient and the parameters of the membership functions
which characterize the fuzzy concepts in the IF-THEN
rules. The modeling of a nonlinear communications chan-

nel based on a complex fuzzy filter is used 10 demonstrate
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the effectiveness of this algorithm. In this practical appli-
cation, the complex fuzzy filter realizes the Bayesian equ-

alizer.
II. Complex Fuzzy Filter

We consider n-input and single-output fuzzy systems
which deal with complex values : &/ C R” — R, where U and
R are respective complex space of the input and output of

(ilter. As usual a complex quanlity is defincd as
z=zg ¥ jzi=(zg, 29 (th

where 2p and z; are the real and imaginary parts of z, re-
spectively, and i=v-1.

Define M fuzzy scts in the product space of real in-
tervals |C;, C}) and imaginary intervals {87, B!] of the
complex tnput space U/, which are labeled as ¥/ (=1, ...,
n, {=1, .., M), in the following way:the M membership
functions pg cover the space [C5, CY1x[B;, B]in the
sense that for each z,€{C7, €/ )and 24 €[B7, B}, there
exists at Icast one gz, 24]7#0. We can construct a set
of changcable complex fuzzy IF-THEN rules in the fol-

lowing form:

R:IF 2y=(zg, 2n) is Fl and ... @
and Zo={(2Zgw, 21} is Fo, THEN 4 is G’

where z=1(2:... 2,/ €U, d is the complex output variable
of the fuzzy system, and G are linguistic terms character-
ized by fuzzy membership funclions ug with center &' = 05
+70;.

If we choose the Gaussian fuzzy membership lunction,
pelzri, 2s) is defined in terms of the mean and variance

pairs of zg and z;, (ml, af') and (m/, 67} by eq.(1):
wplzni, zi) = ppl2ni) peken) 3

eyt 42 1 {2 __m!l 2
_ (e V| - L (2
2 Cpi 2 Oy

Then, we construct the complex fuzzy adaptive filler which

is equivalent to a fuzzy basis function expansion in a fuzzy

adaptive filter [1]:

0 TT sedah)

i=1 1=

Al =——" @
TT et

™=
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I

where pg are the Gaussian membership functions defined

as

gyt N2 el A2
pre) = exp _L(M) 5[ m” )

2 ok 2 Gl

and # € R is any point at which g achieves its maximum
value.
Defining fuzzy hasis functions as

HI #rf(zi(k))

=

p}(l)= w
;Z l_l ,ufj(zx{k))
=li-]
the fuzzy system {(4) is equivalent to an complex FBF ex-
pansion:
M
=1 plde. (6)
r=1

The following theorem shows the complex fuzzy system
based on the FBF expansion are universal approximators.
Theorem:Let Y be the set of afl the FBF expansions. Then,
Y is dense in the set of alt complex continuous functions
on a compact set. Therefore, for any given complex con-
tinuous function g on the compact set UC 4", % is com-
plex domain and arbitrary €20, there exists fE€Y such
that

supren | glx)— F(x} <e. N

A proof of Lhis theorem is given in the Appendix. This the-
orem shows that the FBF expansions (6} are “universal
approximators.”

[l. Complex Orthogonal Least Squares
Algorithm

In order to describe how the complex orthogonal least-
squares (COLS) learning algorithm works, it is essential
to view the complex fuzzy basis function expansion (6) as
a special case of the linear regression model

M

dit)=} pAD0; +elt) (8)

J=1

where d(#) is system outpul, #; are complex parameters,
pi{t) are known as regressors which are fixed functions of

system inputs z{¢), i.c.,

and e{?) is an error signal which is assumed to be uncorre-

lated with regressors. Suppose that we have ¥ input-out-
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put pairs:(2°(£), 4°(2)), t=1. 2, ..., N. Our task is to de-
sign an FBF expansions f(z) such that some etror fun-
ction between f(z°()) and d°(¢) is minimized.

In order to present the Complex OLS algorithm, we ar-

range (8) from ¢ = | to ¥ in the lollowing matrix form:
D=PO t+e (19)

where D=(d(1), ... d(NW7, P=[p\. ., Pl with pi={p1},
o AT, and © =04, ..., )7, e=le(1). ..., elM)|".

The complex OLS algorithm transforms the set of p,
into a set of orthogonal basis vectors and uses only the
significant basis vectors to form the final FBF expansion.
In order lo perform the COLS procedure, we first need to
fix the paramelers (m'y,, m';) and (o', o) in the FBF p,
(z) bascd on the input-output pairs. We propose the fol-
lowing scheme:

Initial FBF Determination,

Choose ¥ initial p(z)’s in the form of (6), with the para-
melers determined as follows:(mi,, m})={2%(7). z2(7),

0b = ™) (D | M, and gy =] an-"" G/,

where =1, 2, .. »m 7=1,2, .. N, and M is the number
of FBF's in the final FBF expansion. We assume (hal M,
is given based on practical constraints;in general, M. <N,

The fuzzy membership funclions can be assumed Lo
achieve unily membership value at some center. We choose
the centers to be the input points in the given input-output
pairs. Finally, the above choice of should make the final
FBF's “uniformly” cover thc input region spanned by the
input points in the given input-culput pairs.

Next, we use the COLS algorithm, similar to that in |7)
and [8]. To select the significant FBF’s from the N FBF's
determined by the initial FBF determination method :

At the first step, for 1 <{< N, compule

Fi=p, an
21, =TV df(rHT(r), 1sg<n, (12)
lerrli=( Lt} - €y iyjeaceto” oy %
Find

lerrli=lerr))' = max{lerr]i, 1<i<N} (14)

and sclect T (=T =p;, .
Al the k-th step where 222, for | << N, 1#1,, ..., ¢ #

tx-1, compute
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wy=C1p /(N M), |<igk, (15
B

Ti=pi— ¥ wjli. (16)

£A=(F£)"dq/{(ri)’"(r;)), 1<g<n, an

|€Tf|;=(i |g;q|2) AT (T iPf1race(D” D) (18)

Find

{errle=lerr|¥ = maxilerrli, 1 <i<N, i%d,, . i#4.) (19)

and sclect

k=1
Ce= P =pa— L wiTy where wa=w?, 1<i<k (20)
F

The procedure is terminated at the 74-th step when

1~ 3 [err]i<¢ 21
i=1
where 0<{<1 is a chosen tolcrance. This gives rise to a
subset logic filter containing », significant rule.
Solve the triangular system

A(M,)@!M.)z g(M,) (22)
2 2] M,
1wy wy L wi
|owhy . whe
) ! W
where A -
MM,
6 0 - 0 1

£ =181, . gl OO =[O, 0.
The final FBF expansion is

",
/(I) = pz',-'(-t) 0:'4' (23)
=1

where make up the subset of the FBF's determined by the
mitial FBF determination method with determined by the
above steps.

The |err]1=(2 |giq|2)'((ri)r(ri))/lraoe(DrD) repre-

qa=1

sents the error reduction ratio caused by I'j. Hence our
COLS algorithm selects significant FBF's based on their
error reduction ratio;ic., the FBF's with targest error re-

duction ralios are retained in the final FBF expansion.
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IV. Adaptive Algorithm based on LMS

Becausc the 8 as well as (m4,;, m5) and (o}, o};) are free
parameler, Lhe ftlter of (4) is nonlinear in the parameter.
Given the desired complex signal d(%), the adaptive algor-
ithm adjusts the filter coefficients (¢, ni'a, m's, o4, ki)

to minimize the cost function L given by
L{k) = Efe(k) e*(k)} (24)

where £ is statistical expectation, the superscript * denotes
complex conjugate, and e{k) = d(k) — f(z(k)).

il Estimation of #(X)

Because the filter coefficients (%) arc complex, it is
necessary to simullaneously adapt both the real and im-
aginary parts. Let the coefficienl be expressed in terms of
tts real and imaginary part as

(kY =0(k) +joik) 25)

According to complex LMS algorithm [5], the adaptation
rule for each part of the p arameter & is

(o o1y ot L 0L

&k +1)=0:k) S TS (26)
y ot L aL

0k +1)=0}(k) 5 @ “385(/2) 27N

where a is a scalar step size that controls the stahility and
convergence rate of the algorithm.

Combining (26) and (27) according to (25), we oblain
the update expression for §(% +1) in terms of #(k) as
oL . dL

+7 205 (28)

1
#k+1)=0k e Py

Thus, the next step is to find some expression for the par-

tial derivative,

oL oL afi JL 313

26~ af atm T an oeim (29)
Evaluating all the partial derivatives in (29), we get

0L _ k) B ) — ek Hh) (30)
0B 30
Similarly,

OL ek — jelk) BCR) G1)
a0k /

where #(k)} have a real value defined as

. 2edR)—mpd RN 1 {2ikR) —myR)Y
e ITexpi- z( kR ) 2( iR ”
2B —mi BV 1 [ zikk)—midk)
,Z.,n. 2 ( R 2( o) ”
Combining (30} and (31), we have
OL 4 OL ey bR) (2)

a0ik) 7 a0l

Substituting (32) into (28), we obtain the following com-

pact expression for adaptation rule of the §:

Ok +1)=0(k) +a - eR)Y (k). (33)
iil Estimation of and s} and o/
We now will estimate the parameter (m};, m}) and (¢};,

@) in membership function. We have define as

mi(ie) = [mg k), m ()T, (34)
oik) = oy k), o (). (35)

We consider the adaptation rule of parameter 7! and o/,

{ = __1. oL
milk +1)=mi(%) 5 * 3R (36}
: - ol — - o
ok +1) = gi(k) 5 « a0'R) 37

AL oL 7

oL
amlik) “[ dmi k) * dml(k)

where

oL
dallk)

L oL 7
daplk) 7 daylk)

Thus, the next step is to find some expression for the
partial derivative,

a oo aL o ,
aml )~ of  omit ' or omiy s OY
Evaluating all the parlial derivatives in (38}, we get
01- 2, (k) —mg (k)
' Ri Ri
(k) — (RN (k) — F(R) b (k) - 7
ol B}
— RN I - £ by - 2B maR)
d¢ (k)
where
’E (k) n exp ‘lz (z,-—mﬁ(k))?:g.-—mf(k)}‘
fly=— ( f(k))r"‘ :
d 1 (2i—mi(E) (2, —mik))
3 Ll
1 f""”[ 2 ) l
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Since (k) (0(k) — (&)} and e(RHE (k) — f(R)) are conju-

gate pairs, we define
R OE) - £UR) — el (k) - £(R)' = 2 Re[e(RNO'(R) ~ £ (kD)

=2 Rele(R (k) - f()')
= 2(k) (40)

Therefore, (39) can be written as

A e - 2R ma®) |

TRy (k)b (k) ') an

Similarly,

_oL TSR z,k) —m, (k)

amigy - PRRE T “2)

R PR ¢ M Lk 710

PP A 3)
oL i EalR) —m )Y

datiky R a2} (44)

Substituting (41)-(44) into (36)-(37), the final adaptation

rule of paramecters 2, and o' is obtained as
mill +1) = mil) - a BRI, 45)
ol +1) = a'(R) ~12 w KB R (R) (46)

where we have defined

— o (B — ol
Pl(k)=1 Zn.‘(k) m"l(k) z/.(k) m(.(k) IT and

) ahlk)

g'tk) =[ (2gk) i R (2,8) — iR’ 1

aki(k) alk)

Equations (33), (45) and (46) are the update equalion
for the filter paramcters. We sec that the initial complex
LMS fuzzy adaptivc filter is constructed based on linguis-
tic rules from human experts and some arbitrary. The me-
mbership functions tn these rules will change during the
LMS adaptation proccdurc. Because minimizing (24) can
be viewed as matching the input and outputs, our com-
plex LMS fuzzy adaptive filter combines both linguistic
and numerical information in its design. Also, since the
initial complex LMS fuzzy adaptive filler is constructed
based on linguistic rules from human experts, the adap-

tation procedure should converge quickly.
V. Experimental Results

In this study, the transmitted symbols s(k) arc assumed
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to be the 4-QAM scheme, i.e., the constellation of s{Z) is
given by s(&) =splk) +7sdk);1 +7, -V +7,1-7, -1-j. The
lask of the equalizer is to reconstruct the transmitted sym-
bols s(k} based on noisy channel observations 2(k) = z(%)
+n(k) where z{k) is a channel output sequence under noise
free condition and n(%) is the noise. Then, the equalizer is
defined by

stk —m) =sgn(fi(2) 47

where mis lag and sgn(-) 1s the complex signum function
defined as

1+7. Relf120and Im|f]=0

santf)= -14+j.  Relf1<0and Im [f}=0
1—7, Relf]=0and Im [f]<0

-1—7, Reif)<0and Im | fi<0

Now consider the nonlincar channel
I(2)={1.0119— 70.7589) 4+ ( —0.3796 + 70.5059) z~'

and the additive noise n(k)=ng(k) +indk), where both
and are while Gaussian noise component with zero mean
and identical variance o? =ai=0). To solve this specific
equalizalion problem, we chose M = 64, o =0.05. We now
use the complex LMS fuzzy adablive filters without any
linguistic informalion with the initialand 0:(0) and 040}
randomly in [ 0.5, 0.5], m;,(0) and m.{0)'s randomily in
(=2, 2]. and ¢*(0)'s randomly in [0.1, 0.3]. Next, we used
the complex LMS (uzzy fller and incorporaled the fuzzy
rules shown in Table 1 and the fuzzy membership func-
tion shown in Fig. 1, as initial parameters.

We have 64 rules in table 1:for example, (P8, P1:N8,

Helzgpor dpf,}

W8 N7 N6 M5 M4 N3 N2 NL{P1 P2 P3 P& PS5 PG PT B

‘._". (R LU R BT
RS SRR B S
4

y lf O ,-. B I!l'.
0 a4 08 1.2 1.6 B0

B T e S T
-24 -20 -16-1.2 0.8 0

Figure 1. The membership functions.

N1} corresponds to the rule;

IF (2 is P8 and 2n is P1) and (zz, is N8 and z;; is N1),
THEN f,is ¢

where the filter outpul is f; and the center of yuq is 0.4 -+
10.4. Because the filler oulput £, is a weighted average of
these centers, the number 0.4 +j0.4, 0.4 —j0.4, —0.4 +j0.4,
~0.4—j0.4 in table | reflect our beliel that input points

should corresponds to one of four catalog +1+7. Fig. 2
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Table ). Fuzzy rules about the decision

Input Cenler

(P8, PI:N8, NI). (P8, P1;N7,N5), (P8, PI3N6, P3), {P8, PI:N5, P6)
(P7,P4:P1, N8), (P7.P4:P2. N4), (P7,P4;P3,PS), (P7,P4;P5,N7)
{P6, N3:N3, N6), (P6, N3:N2, P4), (P6, N3; N, P8),(P6, N3:P3, PS)
(P5,N7.P5, N7), (P5,NT:P6, N3), (P$, N7, P7.P4), (P5.N7.P8 P1)

(P4, P2NB, N1, (P8, P2;N7,N5), (P8, P2; N6, P3), (P8, P2;N5. BS)
(PY.PS.PS.NT), (P3,P5:P6,N3), (P3,P5;P7,Pd), (P3, P5; P8, P}
(P2, N4:P1,N8), (P2, N4 P2, Nd), (P2, N4:P, PS), (P2,N4;P5,N7)
(P1.N8:N3. N6),(PI. N8:N2, P4), (P1, N&; N1, P8), (P1,N&;P3, 85)

0.4 )04

04 -j04

(N2,Pa; N3, N6), (N2, P4.N2, P4), (N2,P4; N1, PB),(N2, P4; P3. P5}
(N3, N6; PS5 N7}, (N3, N6; P6, N3), (N3, N6, P7, P4), (N3, N6; P8, P1)
(N4, NZ;N8, NI}, {N4, N2;N7, N5), (N4, N2Z:N6, P1}, (N4, N2:NS, P}
(NI, P8;PI N8}, (N1, P8.P3, PS). (NI, P8;P3,PS), (N1,P8;PS5,N7)

{NS,P6:N8,N1), (NS, P6; N7, N5), {N3,P6:N6, P3), (N5, P6; NS5, P6)
{N6, P3:P1, N§), (N6, P3: P2, Nd), (N6, P3, P}, PS}, (N6, P3,P5,N7)
(N7,N5:N3,N6),(N7,N5:N2,P4). (N7,N5:N1,P8}.{N7,N5;P3,P5)
(N8, NI:PS, N7}, (N8,NI;P6,N3), (N8, N1,P7,P4), (N8, N1:P3,PI)

-4 +)0.4

-0.4 - j0.4

25

2.0 h e

1.5 X

0.5

0.0 | e L

J. cdn = _1 ‘
0 50 100 150 200 250 300 350
number of iterations

Figure 2, Learning characteristics of fuzzy adapiive filter: {a)
withoul using any linguistic information, (h) after
incorporating some linguistic information.

shows the learning charactcristics of the fuzzy adaptive
filters under SNR = t5dB. In Fig. 2, we sce that the learn-
ing speed can be greatly improved by incorporating these
fuzzy rules.

We compared the bit error rates achieved by the optimal
equalizer, radial basis funclion (RBF) equalizer with 64
centers (4], and the complex LMS fuzzy adaplive equaliz-
ers, for different signal-to-noise ratios, for the given chan-
nel with equalizer order =2 and m=1{. These equalizer
were first trained with 1000 symbols from the output of
the channel and then we evaluated the bit error rates
(BER} based on 10® more received symbols, for each re-
alization. We scc from Fig. 3 that the BER of the fuzzy

equalizers are very closc to the oplimal values.

-1t J

2 cd b

1og10 (blt error rate)

5t i

£ : . N
0 5 10 15 20

Signal to noise ratio (dB)
Figure 3. Comparison of bit error rates achieved by; (1) optimal

equalizer, (b) complex RBF cqualizer with 64 stales,
{c) complex LMS fuzzy equalizer.

VI. Conclusions

In this paper, we developed a complex fuzzy filter and
proved that a complex fuzzy basis functions are capable
of uniformly approximating any complex continuous fun-
clion on a compact sef to arbilrary accuracy, i.e., they are
universal approximators. Also, We devetoped an complex
orthogonal least squares algorithm to select the significant
fuzzy basis functions. Applying the fuzzy filter to nonlinear
channcl equalization problems with complex components,
we showed the usefulness of the complex fuzzy filter.
From simulations, we show that the bit error rates of the

fuzzy equalizers were close to that of the oplimal equalizer.
APPENDIX

To prove the theorem, we use the complex version of
Stone-Weierstraus theorem [9].

Complex Stone-W eierstraus Theorem: et 7 be a set of
complex continuous functions on a compact set U. If 1)
7 is a complex algebra, i.e., the set Z is closed under ad-
dition, multiplication, and complex constant multiplicat-
ion, 2} Z is self-adjoint, i.c., there exists £ € Z whenever
f€Z, where f is he complex conjugate of f. 3) Z separ-

ates points on {/, i.e., for any every x, y€U/, x#y there
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existtts £ € Z such that, f(x)# f(y) and 4) Z vanishes al
no point of U, i.e., for each x €U/ there exists such that f
{x)#0, then, the uniform closure of Z consists of atl com-
plex conlinyous functions on U:l.e., Z is dense in sct of

all complex continuous funclions on a compact set.

Proof} 1)Therefore, firsl we prove that Y is a complex
algebra. Let /,(z{#), /L (z(R)EY, so that we can write

them as

’.‘l L
Z (OR. tf +j0:, h(r[ H, p:(z.(k)))

fulalh) = ———— L G
)3 [l‘l . g(z,{k)))

-t L=t

M n
; (0. 2 +70,.4") H i, i (2R))
Flaky == - . (@.2)

M ”
YT 1, wtzdk)
p=1 =l

Then,

SiR) + f(d8) =

M, M

2 Z ((0;.14‘9;,&) +7(01{/ +0:1)(._ Pl,}‘,(ln(k))’ﬂlg(-?i(k))]

INrN

5 (1T e n(z.-(k)))
=1p=) =)

(a.3)

since gt; () and g, () are Gaussian in form, their pro-

duet g1 q(-) 12 (-} is also Gaussian in form hence (a.3)

is in the same form as (6), so that f,(z(k)) + f,(z(EDEY.
Similiary, we have (a.4)

Sz £tk =

Mo My

Z Z ((ﬂ..ﬂfrﬂfﬂi.} +)w:. !U;J +8:.l”!’.l)] fl ﬂl.ﬁ'.(zn'(k))‘ﬂl H{Z:{k”)

It p=)

33 (f] s, oD 1 ,,<z.~(k)))

I=lp=t \i=1

(a.9)

which is also in the same form of (4):hence f,(z(B))- f.(z
kney
Finally, for arbitrary complex constanl ¢ =a +4€ %,

c fiz(R) =

E ((a'on.nJ"b'Bl.!'] +f((a'0|,;‘+b"9v, kr))) ﬁ 1y ﬁ'{zn{k])'}lz_ r:[z:{k}))

f=1

P: ! He .F‘,(zl(k)) * Ha, F:(zl(k)))

(a.5)
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which is again in the form of (4);hence ¢- f,(z(R) € Y

2) we have complex conjugate of {4) as

,Z (008"~ 7005 TT o, elzdle))
flzk) =

11w, sdai)

f=1pal

u . (a.6)
FZ O +5(=00.0) T1 . p(2d8)

™=

_l—l . }‘,(Zt(k))

> !

'

1

which is in the same form of (4): hence £ {z(k) €Y. There,

Y is sell-adjoint.

3) we prove this by conslructing a required fiie., we spec-
ify f{x)€Y such that f{x)# f(y) for arbitrarily given
x, yEU with. Since Y is self-adjoint, we have rcal and
imaginary term of f as

M "

i
60 +ftx) Z A0 TT pu ek

Ref(x)= 2 M on (37)
;.\':. n H, }:(Jﬂ(k))
T (0! 0
. = 2 @) H, ﬁ]’(x:(k))
Im f(x) = F) /() AL £= (a)

2 M a
T po sstek))

I=1i=1

Then, Ref(x} and Imf{x} is a real-valued function. Using
slone-Weistrass theorem [1], we can easily see that Re £ (x)
and Imf{x) is real-valued continuous function, i.c., Ref
(x}#Re/(y) or lmf{x)#Imf(y), for x# yihence f(x)#
F(») for arbitrily given x, y€ U with x#y. Therefore Y
separafes points on U.
4} we prove that ¥ vanishes at no point of &/, We simply
choose all |#/1=10 +76/1>0;i.c., any FEY with |0
>0 serves as the required f.
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