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Abstract

A fuzzy logic filter is constructed from a set of fuzzy IF-THEN i■니es which change adaptively to minimize some criterion 
function as new information becomes available. This paper generalizes the fuzzy logic filter and it's adaptive filtering algor
ithm to include complex parameters and complex signals. Using the complex Stone-Weierstrass theorem, we prove that lin
ear combinations of the fuzzy basis functions are capable of uniformly approximating any complex continuous function on 
a compact set to arbitrary accuracy. Based on the fuzzy basis function representations, a complex orthogonal least-squares 
(COLS) learning algorithm is developed for designing fuzzy systems based on given input-output pairs. Also, we propose 
an adaptive algorithm based on LMS which adjust simultaneously filter parameters and the parameter of the membership 
function which characterize the fuzzy concepts in the IF-THEN rules. The modeling of a nonlinear communications chan
nel based on a complex fuzzy filter is used to demonstrate the effectiveness of these algorithm.

I. Introduction

In recent, the fuzzy logic filter have ever-increasingly 
been applied to many diverse fields in signal and control 
processing[l][2][3][4]. The fuzzy adaptive filter, which is 
constructed from a set of changeable fuzzy IF-THEN rules 
has drawn a great deal of attention because of its univer
sal approximation ability. These fuzzy rules come either 
from human experts or by matching input-output pairs 
through an adaptation procedure[5]. We therefore would 
like to apply this non-linear adaptive algorithm to the sig
nal processing problems. Some examples of application of 
fuzzy filter to signal processing include classification and 
signal prediction, communications channel equalisation, 
and nonlinear systems modeling and identification. Most 
available fuzzy filters are real-valued and are suitable for 
signal processing in real multidimensional space.

In some applications, however, signals are complex 
valued and processing is done in complex multi-dimen
sional space[6][7][8]. An example is the equalisation of 
digital communications channels with complex signaling 
schemes such as quadrature amplitude modulation 
(QAM). For complex sign지 processing problems, many 

existing fuzzy filters cannot directly be applied.
The present study proposes a complex fuzzy adaptive 

filter with changeable fuzzy IF-THEN rules, which is an*  

extension of the real fuzzy filter. Specifically, membership 
function of this is real. The inputs and outputs as well as 
parameters of the filter are all complex-valued. The filter 
can be viewed as a mapping from the complex multi-in- 
put onto the complex one-output. When both the filter 
inputs and desired outputs are reduced to real-valued, 
this complex fuzzy filter degenerates naturally into the 
real fuzzy filter.

An advantage of this complex fuzzy filter is that linear 
learning laws can be derived as in the real case. Two 
learning algorithms, the complex orthogonal least squares 
algorithm and complex LMS algorithm are presented. 
The COLS algorithm is a batch learning algorithm and it 
constructs fuzzy rule in a rational way until an adequate 
performance is achieved. The complex LMS algorithm 
can conveniently be implemented as a recursive learning 
algorithm. These two algorithm are derived as natural 
extensions of their real counterparts. The adaptive algor
ithm based on least mean squares (LMS) adjust filter co
efficient and the parameters of the membership functions 
which characterize the fuzzy concepts in the IF-THEN 
rules. The modeling of a nonlinear communications chan
nel based on a complex fuzzy filter is used to demonstrate 
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the effectiveness of this algorithm. In this practical appli
cation, the complex fuzzy filter realizes the Bayesian equ
alizer.

II. Com이ex Fuzzy Filter

We consider w-input and single-output fuzzy systems 
which deal with complex values: t/C —* /?, where V and 
R are respective complex space of the input and output of 
filter. As usual a complex quantity is defined as

Z = Zr +丿动=(幻(，2/) (1)

where zR and zf are the real and imaginary parts of z, re
spectively, and j = V — 1 .

Define M fuzzy sets in the product space of real in
tervals [C7, C打 and imaginary intervals [毎，Bt] of the 

complex input space U, which are labeled as F： U- 1, 

n, / 누 1, M), in the following way：the M membership
functions 丄加 cover the space C?]〉아Bt] in the
sense that for each 疋[C7 ,Cf] and 2/： 6 [BF, Bt\, there 

exists at least one “対伝成，2^]/0. We can construct a set 
of changeable complex fuzzy IF-THEN rules in the fol
lowing form：

HlF 21 = (%, z/i) is Fli and ... ⑵

and 為=(幻珈，Z/n) is F，, THEN d is Gl

where z-(Zi... 2，沪든 U, d is the complex output variable 
of the fuzzy system, and Gl are linguistic terms character
ized by fuzzy membership functions 貽 with center O1 -Or 
+泌.

If we choose the Gaussian fuzzy membership function, 
卩H(Zrl 旬)is defined in terms of the mean and variance 
pairs of zR and zf,(戒 trf) and (m!, erf) by eq.(D：

M&Ri, Z//) = ^(zRi) (3)

=때勺근)1 叶/쓰)1
Then, we construct the complex fuzzy adaptive filter which 
is equivalent to a fuzzy basis function expansion in a fuzzy 
adaptive filter [1]：

E fl 加(钦))Z=1 (=1 / 、
源眼二二------------ ⑷

e n以赫)) 
I=11=1 

where “月 are the Gaussian membership functions defined 
as

and 俨E A is any point at which 卩，& achieves its maximum 

value.
Defining fuzzy basis functions as

fl加⑵伙))
i= t

用)=二一二-----------

E fl即個(同) 
I = I i = I

the fuzzy system (4) is equivalent to an complex FBF ex
pansion :

M
/(z) = E /0J. (6)

The following theorem shows the complex fuzzy system 
based on the FBF expansion are universal approximators. 
Theorem： Let Y be the set of all the FBF expansions. Then, 
Y is dense in the set of all complex continuous functions 
on a compact set. Therefore, for any given complex con
tinuous function g on the compact set UU财、k is com

plex domain and arbitrary e>0, there exists f^Y such 
that

SUpxeu I g(x) - f(x)\ < £. (7)

A proof of this theorem is given in the Appendix. This the
orem shows that the FBF expansions (6) are "universal 
approximators/

DI. Complex Orthogonal Least Squares 
Algorithm

In order to describe how the complex orthogonal least
squares (COLS) teaming algorithm works, it is essential 
to view the complex fuzzy basis function expansion (6) as 
a special case of the linear regression model

M
d(t)=、£ pj<t)ej+e(t) (8)

7 = 1

where d(t) is system output, Oj are complex parameters, 
pj(t) are known as regressors which are fixed functions of 
system inputs z(£), i.e.,

3。)그/项业)) (9)

and e(t) is an error signal which is assumed to be uncorre
lated with regressors. Suppose that we have N input-out- 
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p나t pairs:(z°(Z), d心), Z=l, 2, N. Our task is to de
sign an FBF expansions /(z) such 하lat some error fun
ction between /(z°(/)) and d°(t) is minimized.

In order to present the Complex OLS algorithm, we ar
range (8) from t = 1 to N in 나le fallowing matrix form:

D = P& +e (10)

where D니』(1), d(A이，, P = [px, pM] with 力—0(1),
…, p,(N)]Ti and ® = [仇, …, 0m]t, e 니。(1), …, e{N)]T.

The complex OLS algorithm transforms the set of pi 
into a set of orthogonal basis vectors and uses only the 
significant basis vectors to form the final FBF expansion. 
In order to perform the COLS procedure, we first need to 
fix the parameters (mlRi,刀此)and (<tlRi, /”)in the FBF pi 
(z) based on the input-output pairs. We propose the fol
lowing scheme:

Initi시 FBF Determination,
Choose N initial pj(z)'s in the form of (6), with the para

meters determined as follows ：(m%, 侦)，，成(项))，

保 = [ (迎))-瞟(가,(”)]侷, and 吋 = [ m;%：(,))_m：n (抑)]/"， 

where i= 1, 2, n, j= 1, 2, …, N、and Ms is 나le number 
of FBF's in the final FBF expansion. We assume that M$ 
is given based on practical constraints；in general, Ms《N、

The fuzzy membership functions can be assumed to 
achieve unity membership value at some center. We choose 

the centers to be the input points in the given input-output 
pairs. Finally, the above choice of should make the final 
FBF's "uniformly” cover the input region spanned by the 
input points in the given input-output pairs.

Next, we use the COLS algorithm, similar to that in [7] 
and [8]. To select the significant FBF's from the N FBF's 
determined by the initial FBF determination method :

At the first step, for compute

「"드 (11)

乩=(厂；)「％/((厂)『(「；))，\<.q^nQ (12)

沽시 = 伊 IKJ j . ((r；)r(r；))/trace(Z)rZ)) (13)

Find

[err]I = [err]1' = max {[err]；, 1 (14) 

and select r i = T ；l =pi\.
At the k-th step where 为그2, for 1 WN, 件", …, zV 

ik- \, compute

싸=「3/((「y(「，)), (15)

k— I
厂;=0 - L 効宀， (16)

1= I

£% = (「；)「％/((「；)「(「；))， \<.q<.na (17)

由4 =传爲I j • ((ry(r；))/trace(Z>P) (18) 

Find

["기*니 g]「=max{3시;, Mz'GV, 涔z'i, 注让】} (19)

and select

k ― 1
= = E w；iF/ where w!k=w^, (20)

/= I

The procedure is terminated at the 彻-th step when

I - E [err]i<C (21)
i= I

where 0< 1 is a chosen tolerance. This gives rise to a
subset logic filter containing nh significant rule.

Solve the triangular system

(22)

...如％ “

... 如比 

i u)iM-

0 1

gW> =[母，…，幻，,卩€)妳=卩冷，，0M.y

The final FBF expansion is

fix) = E pi,(x)0^ (23)
g I

where make up the subset of the FBF's determined by the 
initial FBF determination method with determined by the 
above steps.

The = 風1 j.((厂况(厂;))/启3四0 repre

sents the error reduction ratio caused by FJ. Hence our 
COLS algorithm selects significant FBF's based on their 
error reduction ratio;i.e., the FBF's with largest error re
duction ratios are retained in the final FBF expansion.

4材,)G)(材,)= g(M*)

1 
0 厲

where

0 0
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IV. Adaptive Algorithm based on LMS

Because the 0 as well as (秫如, and ((癌, 이 ) are free 
parameter, the filter of (4) is nonlinear in the parameter. 
Given the desired complex signal d(k), the adaptive algor
ithm adjusts the filter coefficients {俨，mllt, d；,苏} 

to minimize the cost function L given by

〃 E* 씌겺쁴'十꺼湍씌1
£5늬聳辭HF鶴判

Combining (30) and (31), we have

爲+y伝=* 灿 (32)

L(k) = E{e(k) e*U)} (24)

where E is statistical expectation, the superscript * denotes 
complex conjugate, and e(k) = d(k) -

Substituting (32) into (28), we obtain 하)e following com
pact expression for adaptation rule of the 伊：

俨Q + 1)=的舫+a • W侬渺Q). (33)

i] Estimation of Njc)

Because the filter coefficients 伊(花)are complex, it is 
necessary to simultaneously adapt both the real and im
aginary parts. Let the coefficient be expressed in terms of 
its real and imaginary part as

ii] Estimation of and 况 and(H

We now will estimate the parameter (m% , m#) and (o*  , 
시) in membership function. We have define as

刎=咐）+•丽） (25)
兄 Q） 니夜。）,邳舫氏

(34)
(35)

According to complex LMS algorithm [5], the adaptation 
rule for each part of the p arameter 0 is

이%+i）=嘛）-事 3記

0條+i）=恤*2 烏

We consider the adaptation rule of parameter and

mli(k +1) =
dL

(36)

(26)
ffi(k +1) = Oi(k) —-• a

QL
(37)

da^k)

(27)
. 犯 [where ------r—=—— dL_ 犯 -T

where a is a scalar step size that controls 하le stability and 
convergence rate of the algorithm.

Combining (26) and (27) according to (25), we obtain
the update expression for +1) in terms of 0아) as

dL _______ ______
如 *)  [ 8成。)’8况0)

dL 8L 卩

俨di）= "）Y矗+顶希 (28)

Thus, the next step is to find some expression 
partial derivative,

for the

Thus, the next step is to find some expression for the par
tial derivative,

犯=_8L_ .苗 dL
a戒(对 ~ af ' 8m'Ri(k)+ 8f*  ' ' (38)

Evaluating all 나le partial derivatives in (38), we get
dL 
两Q) ~ dfk

dL ah 此 M 
a 硏您)sfl ' d0lR(k) (29)

Evaluating all the partial derivatives in (29), we get

읎汀 = 7•蹌四沪涵洲闵

씂面=«)的1例灿 • 스쓰辭)

I (39)
-e統)(俨Q)-/。))%'。) - 츠'씨/?"),

<r； Q)

Simila 디 y,

씂兩■ = 5k、）b 仙 -je 时廿戏）

where 나时 have a real value defined as

(30)

(31)

where

£ 俨Q) fl exp\-- 으顼쓰E务끄宼)) 
/(«=--一츠一―La

£ fl exp[-~ (즈-"血))
/ = I «= 1 [ 2

WQ)

。汝）
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Since e*Q) (俨(舫 一/(&)) and 仑伙)(伊(舫一/。))*  are conju

gate pairs, we define

殊)(伊。)-丿0)) -eQ)(0S -/以))* = 2 «e[^)W)-/(«)] 
=2厕心)(徊-/(舫)*] 

=2颇 (40)

Therefore, (39) can be written as

dL ——疵加 .으瓯늪뻗业.
(T； (k)

(41)

Similarly,

dL = 統) . 业느羿处 , (42)

=_岫岫M쓰그讐止, 
晚(舫

(43)

dL
d况伙)

=_灿灿.鱼业諜型.

”(%)
(44)

Substituting (41 )-(44) into (36)-(37), the final adaptation 
rule of parameters and & is obtained as

m\(k = a-h)(Jz)bl(k)pl(k), (45)

根+1)=廿(舫-土 "Q)漩)灿 (46)

where we have defined

河---------和「and

Z,M [ (%Q)-戒@))2 (Z/.(^)-m；,U))2 V 
g)=[―河-----------丽一],

Equations (33), (45) and (46) are the update equation 
for the filter parameters. We see that the initial complex 
LMS fuzzy adaptive filter is constructed based on linguis
tic rules from human experts and some arbitrary. The me
mbership functions in these rules will change during the 
LMS adaptation procedure. Because minimizing (24) can 
be viewed as matching the input and outputs, our com
plex LMS fuzzy adaptive filter combines both linguistic 
and numerical information in its design. Also, since the 
initial complex LMS fuzzy adaptive filter is constructed 
based on linguistic rules from human experts, the adap
tation procedure should converge quickly.

V. Experimental Results

In this study, the transmitted symb이s s(k) are assumed

to be the 4-QAM scheme, i.e., the constellation of s나/) is 
given by s(k) = sR(k) +j, 니 1-人 -\~j. The
task of the equalizer is to reconstruct the transmitted sym
bols s(訪 based on noisy channel observations z(k) - 
+n(k) where z(k) is a channel output sequence under noise 
free condition and n(k) is the noise. Then, the equalizer is 
defined by

s나。-滴 = sgn(fk(z)) (47)

where m is lag and sgn( -) is the complex signum function 
defined as

1 +/, ReL/]느0 and Im [/]느0
T Re[/]<0 and Im [/]>0 

sgn(f)= “
1 -y, ReLf]느0 and Im Lf]〈O 

-1 — 7, Re[/]<0 and Im [/]<0

Now consider the nonlinear channel

W(z) = (1.0119-/0.7589) +(—0.3796 +/0.5059)z-'

and the additive noise n(k) = nR(k) where both
and are white Gaussian noise component with zero mean 
and identical variance c2 = = cr；. To solve this specific
equalization problem, we chose M = 64, a = 0.05. We now 
use the complex LMS fuzzy adaptive filters without any 
linguistic information with the initialand 0^(0) and Pj(O) 
randomly in [-0.5, 0.5],也如(0) and 凯匕(0)'s randomly in 
[—2, 2], and(t2(0)'s randomly in [0.1, 0.3]. Next, we used 
the complex LMS fuzzy filter and incorporated the fuzzy 
rules shown in Table 1 and the fuzzy membership func
tion shown in Fig. 1, as initial parameters.
We have 64 rules in table 1: for example, (P8, P1;N8,

3Ror 〃心，，)

N8 N7 N6 N5 N4 N3 N2 N1 Pl P2 P3 P4 P5 P6 P7 P8

U \ i(打'i， y M ， 「丨 11 < ； i i ,■； ' I
)M L___ _ 'i__  一 一入_k，.一一-丄亠  ______ I :__L一

-2.4 -2.0 -1.6 -1.2 M.8 -0.4 0 0.4 0.8 1.2 1.6 2.0 2.4

Figure 1. The membership functions.

Nl) corresponds to the rule；

IF (Zr\ is P8 and Z/i is Pl) and (幻也 is N8 and m is Nl), 
THEN 五 isG
where the filter output is fk and the center of “g is 0.4 + 
j0.4. Because the filter output /L is a weighted average of 
these centers, 나】e number 0.4 +j0.4, 0.4-jO.4, -0.4 +j0.4, 
-0.4 —j0.4 in table 1 reflect our belief that input points 
아)ould corresponds to one of four catalog ± 1 ± /. Fig. 2
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Table 1. Fuzzy rules about the decision

Input Center

(P8,P!；N8,N1), (P8,P1；N7,N5), (P8, Pl ；N6, P3), (P8,P1；N5,P6) 

(P7,P4；P1,N8), (P7,P4；P2,N4), (P7,P4；P3,P5), (P7,P4；P5,N7) 

(P6,N3；N3,N6),(P6,N3；N2,P4), (P6,N3；N1,P8),(P6,N3；P3,P5) 

(P5,N7；P5,N7), (P5,N7；P6,N3), (P5,N7；P7,P4), (P5,N7；P8,P1)

0.4 +j0.4

(P4,P2；N8,N1), (P8,P2；N7,N5), (P8,P2；N6,P3), (P8,P2；N5,B6)

(P3,P5；P5,N7), (P3,P5；P6,N3), (P3,P5；P7,P4), (P3,P5；P8,P1)

(P2,N4；P1,N8), (P2,N4；P2,N4), (P2,N4；P3,P5), (P2,N4；P5,N7)

(PLN8；N3,N6),(P1,N8；N2,P4), (Pl,N8；Ni,P8),(P!,N8；P3,B5)

0.4-j0.4

(N2,P4;N3,N6),(N2,P4；N2,P4), (N2,P4；N1,P8),(N2,P4；P3,P5) 

(N3,N6；P5,N7),(N3,N6；P6,N3),(N3,N6；P7,P4),(N3,N6；P8,P1) 

(N4, N2；N8, Nl), (N4, N2；N7, N5), (N4, N2；N6, P3), (N4, N2；N5,P6) 

(N1,P8；P1,N8), (N1,P8；P3,P5), (N1,P8；P3,P5), (N1,P8；P5,N7)

-0.4 +j0.4

(N5,P6；N8,N1), (N5,P6；N7,N5), (N5,P6；N6,P3), (N5,P6；N5,P6)

(N6,P3；P1,N8), (N6,P3；P2,N4), (N6,P3；P3,P5), (N6,P3；P5,N7)

(N7,N5；N3,N6),(N7,N5；N2,P4), (N7,N5；N1,P8),(N7,N5；P3,P5)

(N8,N1；P5,N7),(N8,N1；P6,N3), (N8,N1；P7,P4), (N8,N1；P8,P1)

-0.4-j0.4

number of iterations

2.5 -——

--
2.0 X.

、 ' a
1.5 \ \

b '\ '、、

1.0
\ \
\

\ \\ \
0.5- \ '、、

0.0 X 、

0 50 100 150 200 250 300 350

Figure 2. Learning characteristics of fuzzy adaptive filter； (a) 

without using any linguistic information, (b) after 

incorporating some linguistic information.

shows the learning characteristics of the fuzzy adaptive 
filters under SNR = 15dB. In Fig. 2, we see that the learn
ing speed can be greatly improved by incorporating these 
fuzzy rules.

We compared the bit error rates achieved by the optimal 
equalizer, radial basis function (RBF) equalizer with 64 

centers [4], and the complex LMS fuzzy adaptive equaliz
ers, for different signal-to-noise ratios, for the given chan
nel with equalizer order n = 2 and m= 1. These equalizer 
were first trained with 1000 symbols from the output of 
the channel and then we evaluated the bit error rates 
(BER) based on 106 more received symbols, for each re
alization. We see from Fig. 3 that the BER of the fuzzy 
equalizers are very close to the optimal values.

T

-3
-4

(
읜
£

・=q) 으-

0 5 10 15 20

Signal to noise ratio (dB)

-5

-6

Figure 3. Comparison of bit error rates achieved by； (1) optimal 

equalizer, (b) complex RBF equalizer with 64 states, 

(c) complex LMS fuzzy equalizer.

VI. Conclusions

In this paper, we developed a complex fuzzy filter and 

proved that a complex fuzzy basis functions are capable 
of uniformly approximating any complex continuous fun
ction on a compact set to arbitrary accuracy, i.e., they are 
universal approximators. Also, We developed an complex 
orthogonal least squares algorithm to select the significant 
fuzzy basis functions. Applying the fuzzy filter to nonlinear 
channel equalization problems with complex components, 
we showed the usefulness of the complex fuzzy filter. 
From simulations, we show that the bit error rates of the 
fuzzy equalizers were close to that of the optimal equalizer.

APPE 시미 X

To prove the theorem, we use the complex version of 
Stone-Weierstraus theorem [9].

Complex Stone-Weierslraus Theorem-Let Z be a set of 
complex continuous functions on a compact set U. If 1) 
Z is a complex algebra, i.e., the set Z is closed under ad
dition, multiplication, and complex constant multiplicat
ion, 2) Z is self-adjoint, ie, there exists /GZ whenever 
/GZ, where f is 나le complex conjugate of f. 3) Z separ
ates points on U, i.e., for any every x, yGU, x^y there 
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existtts /EZ such that, /(%)#f{y) and 4) Z vanishes at 
no point of U, i.e., for each x&U there exists such that f 
(x)#0, then, the uniform closure of Z consists of all com
plex continuous functions on U Z is dense in set of 
all complex continuous functions on a compact set.

Pfoof〉l)Therefore, first we prove that Y is a complex 
algebra. Let so that we can write

them as

E (0«. /+70,./)(fl y(故)))
心 / ,、

=-------—------------ ；------- ， (a」)

e m，&(故))

E(^2. / +>02./) FI ”2E(W)) 
p= I 1=I

£(zQ)) =----------- ---------------------------------  . (a.2)
e n 絢) 

t>=11=I

Then,

+£(zQ))=
E E (由L +昭)+・测.,+化：,)伯【“5(z絢)用脚时

E E (fl s阿(為。)))
/=)/>=)\ /=I / ,、

(a.3)

since and are Gaussian in form, their pro
duct is also Gaussian in form；hence (a.3)

is in the same form as (6), so that £(zQ)) +£(z(k))E Y.
Similiary, we have (a.4)

尤(zQ))・£(zQ)) =
£ £（（w-o"%）+w+哈此））伉如個））加（那））

Ip~t \i=l !
M, Mi / n 
e e n 阳 

Z = I />= I \ i = I
(a.4)

which is also in 나雄 same form of (4) ； hence

(册)3
Finally, for arbitrary complex constant c-a •누jbe 氏,

c-/1(zW) =
E(("槌」小仇/)+，((抑/+"口))伉 如例))*w(z쎄 
/=i \i=I /

E (fl 阳,月0。))*2"扁。))) (=i \|=( /
(a.5)

which is again in the form of (4);hence c-//zC^))e Y
2) we have complex conjugate of (4) as

M n
ln (石(切)

- /=) r=|
/l(z(^)) =---------- - ------------------------------

E I후I %,片伝佝)
I =( i=(

(a.6)M n
e Wi./ +y(-0i,/))n 卩 허&))
I = 1 i = I

_ £ fl灼*伺册)

which is in 나le same form of(4) ； hence fx(z(k)) G Y. There, 
Y is self-adjoint.
3) we prove this by constructing a required f；i.e., we spec

ify /(%)GY such that f(x)^f(y) for arbitrarily given 
%, / with. Since Y is self-adjoint, we have real and
imaginary term of f as

M n
、£ s'）「I 闵"《（以矿）

Re/（r） = 及安브更 = 느~一츠-----------

2 M n
e n “eg忠））I i=I

mZ俱业
M n

e (步')n “e(的。))i=I (=I

E flz=l i = t

(a.7)

(a.8)

Then, Re/(x) and Im fix) is a real-valued function. Using 
stone-Weistrass theorem [11, we can easily see that Re/(r) 
and Im fix) is real-valued continuous function, i.e., Re/ 
(x)幸Ref(y) or Im/(x)丰Imf(y), for hence fix)# 
f(y) for arbitrily given %, V with x^y. Therefore Y 
separates points on V.
4) we prove that Y vanishes at no point of V. We simply 

choose all |俨丨니保 +丿仞I >0；ie, any /e y with \0} \ 
>0 serves as the required f.
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