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Abstract

This study attempts to test the classifying performance of a neural network and thereby examine its applicability to the signals 

distorted in a shallow water environment. Linear frequency modulated (LFM) signals are simulated by using an acoustic model 

and also measured through sea experiment. The network is constructed to have three layers and trained on both data sets. To get 

normalized power spectra as feature vectors, the study considers the three transforms: short-time Fourier transform (STFT), 
wavelet transform (WT) and pseudo Wigner-Ville distribution (PWVD). After trained on the simulated signals over water depth, 
the network gives over 95 % performance with the signal to noise ratio (SNR) being up to -10 dB. Among the transforms, the 
PWVD presents the best performance particularly in a highly noisy condition. The network performs worse with the summer 

sound speed profile than with the winter profile. It is also expected to present much different performance by the variation of 

bottom property. When the network is trained on the simulated signals, it classifies over 90 % of the measured signals. On the 

contrary, when the network is trained on the measured signals, it gives a little better results than that trained on the simulated data. 

In conclusion, the simulated signals are successfully applied to training a neural network, and the trained network performs well 

in classifying the signals distorted by a surrounding environment and corrupted by noise.

I. Introduction

There has been an increasing interest in using nc니ral 

networks to classify passive sonar data [1-5]. Several papers 
dealing with transient signal classification have been 

published in recent proceedings and journals. For example, 

Desai and Shazeer [6], Hemminger and Pao「기 found a 
back-propagation (BP) network to be useful for classifying 

targets based on transients. Kundu et al.[8] successfully used 

a hidden Markov model and a multilayer perceptron network 
to classify transient signals. Meanwhile, Na et al.[9,10] 

found that a BP network could be successfully applicable to 

tracking tonals of low frequency, and even to filtering out 
ambient noise from underwater noisy signals.

While these studies have been encouraging, there is 

considerable need to investigate further the use of neural 

network in the analysis of passive sonar data. In particular, 

while the classification of real ocean data is the ultimate goal 
of the sonar classifier, it is very difficult to access neural 

network capabilities when the nature of the source data is not 

well understood. Moreover, most of these studies have not 

considered or defined environmental conditions in which 

acoustic waves propagate. Consequently, it has been hard to 
estimate the applicability of neural networks to the signals 

distorted by the surrounding environment. The signals 

inevitably undergo distortions by the environment in which 

they propagate.

Few papers have been published to deal with the signals 

distorted by surrounding environment. Field et al.[l 1] tried 

to classify the signals distorted by the environment and 
found that the network was able to recognize the received 
signals with 90 % accuracy. However, the network was 

tested under limited environmental conditions of no noise 
and relatively short range (5 km) compared with the water 

depth (1.3 km). In these conditions, the traveling waves 

suffer one surface or/and bottom interaction, yielding small 

distortion and loss. Moreover, the study dealt only simulated 

signals and covered small portion of water column, the 
coverage being 125 m from the bottom.

This study assumes the environment to be shallow 
water, and considers environmental variations in sound 

speed profile (SSP) and bottom property. The linear 

freq나ency modulated (LFM) signals are simulated at four 
range steps (2, 5, 10 and 20 km) and then white Gaussian 
noise is added to test the network performance on noisy 
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signals. The LFM signals are chosen because they are 
relatively simple to be generated but enable to analyze the 

distorted signals with ease. They are regarded to be enough 
to accommodate the signal distortion caused by the 

environment. Time signals are simulated through an acoustic 

model to accommodate the environmental effects. To the 
sim비ated signals, noise is added to produce noisy signals. In 

addition, real measured signals are employed to test the 
network performance. The first 응oal of the study is directed 

to examining the applicability of the simulated sign지s to 

train a network. The second one is to examine the 

applicability of the trained network to the simulated and 

measured signals.

II. Theory

A. Spectrum Estimation for Non-Stationary Signals

Many temporal signals that are inherently non-srationary 

can be regarded as stationary if viewed over a short period of 
time. Since the frequency content of stationary signals is a 

very powerful method of description, the time history of the 

power spectrum is an important tool for characterizing 
sigils whose statistical properties are changing slowly with 

time. This method of characterization has been especially 

important for speech processing and for sonar signal 

processing [12-15].
In this study, three methods are considered: short-time 

Fourier transform (STFT), pseudo Wigner-Ville distribution 

(PWVD), and wavelet transform (WT). The theory on 
PWVD is described in the accompanying paper [16],

Short-Time Fourier Transform (STFT)

The most direct approach to computing the time history of 

the power spectrum is to view the recorded data through a 

moving average window whose length corresponds to the 

time over which the data can be assumed to remain 

stationary. The Fourier transform of the windowed data is 
known as the STFT. The STFT of the given data is defined 

by[l 기

X["0]w £x[幻"n-妇e”“， (1)

where the window extends from n-L to n+L. The power 
spectral estimate is given by the short-time periodogram

c 1 ,
RE, co]=江1 XMSI (2)

The time history of the spectrum comprises the so called 

spectrogram (or lofargram in sonar signal processing).

Wavelet Transform (WT)
Instead of decomposing a signal into harmonic functions 

eJ^in the Fourier transform, in the WT, one can classify a 
signal by a series of orthogonal basis functions of finite 
length. Recently, much attention has been directed to this 
new transform, especially in signal and image processing 

[18]. An important property of the WT is its ability to 
capture major characteristics of transient or non-stationary 

signals, simply by changing the scales of local structure in 

the time-scale plane.
For a time signal s(f), the WT may be expressed as

C(a,b) = -r「中(4二e)s(r)*,  (3)

a J-。。 a

where 屮 is an analyzing wavelet, a and b denote time 

dilation and translation, respectively.
This study employs the wavelet such that its frequency 

axis is partitioned into successive octaves called scales. For 

computational efficiency, integral power of 2 is used for 

frequency partitioning so that the wavelet is scaled and 
translated as 屮(2'—化)，where i, k are integers. The analyzing 

wavelet is obtained from 中(r) by dilating 1/21 arid

translating k/2l. In this case, the WT becomes

C(2',b) 즈 -'广h 나'( r )s(r)d£. (4)
J기 Jy 기

As a mother wavelet W, a modulated Gaussian [18] is 

employed

'印)= (5)

The Fourier transform of Eq. (5) has the form

(6)

where 왁” is analysis frequency. The bandwidth of the WT, 

BW, is proportional to l/a, thus comprises a constant relative 

bandwidth since bandwidth divided by analysis frequency is 
constant.

B. Conjugate Gradients (CG)

The problem of minimizing continuous, differentiable 

functions of many variables is one that has been widely 
studied, and many of the conventional approaches are 

directly applicable to the training of neura] networks. This 

study introduces the CG algorithm by Johanson et al.[19].
For a quadratic error function, an iterative equation may be 

derived in the following form through some manipulation [20]
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W7+, =W7 +ajdj. ⑺

Here, wj and dj denote the point vector of 丿-th step, and 

vector which is mutually conjugate with respect to Hessian 

matrix H, respectively. This represents a succession of steps 
parallel to the conjugate directions, with step lengths 

controlled by the parameters 偈.

After some manipulations are made, q can be written in 

the form [2이 

a -豊也
1 d：Hd,'

(8)

It can be shown that if the weights are incremented using Eq. 

(7) with the % given by Eq. (8), then the gradient vector gj at 
the J-th step is orthogonal to all previous conjugate 

directions [19]. It therefore follows that after steps the 

components of the gradient along all directions have been 
made zero, and so one will have arrived at the minimum of 

the quadratic form.
The problem is how to construct a set of m니uaally 

conjugate directions. This can be achieved by selecting the 

first direction to be the negative gradient d户一g” and then 
choosing each successive direction to be linear combination 

of the current gradient and previous search direction,

dAl = -g；+l + Pjdj- (9)

The coefficient & can be found by the same procedure as 

with q

a 一小叫

0 _ d；HdJ ■ (10)

By examining Eqs.(7) and (9), one can notice that they are 
very similar to traditional BP algorithm with momentum. 

However, there are two differences: In traditional BP, the 

step size is fixed, while in the CG algorithm, it is carefully 

chosen to be the line minimum along the search direction. 
Also, in traditional BP the momentum is usually fixed. In the 

CG algorithm, the momentum is optimally adjusted for each 
new step. These are actually two quite significant 

differences, and they account for the typically huge 
difference in performance. In order to gain a more global 

view, an simulated annealing algorithm is employed in 
addition to the CG which tends to sink into any convenient 

minimum [19,2이.

III. Signal Simulation and Measurement

This study considers a LFM signal of center frequency 200 
Hz and bandwidth 100 Hz so that the signal sweeps up or 

down in 150-250 Hz. The source signal is generated by the 

following equation [21]

$«) = si미2几(为 + 河 ? /2)], (H)

where/,= center frequency (200 Hz), m= bandwidth (100 

Hz). For the upsweep (class A) signal, the time goes from 

-772 to 772 and for the downsweep (class B) signal from 772 
to -772. The sampling frequency is 1024 Hz so that 1024 
sequences are generated over a period of one second.

Before the simulation of signals, a modified Hamming 
window is applied to the signals generated by Eq. (11). The 

window is taken at the beginning and end of each 10 % 

sweeping period. This leads to reduce the energy leakage 

caused by the discontinuity of the finite record of data. 
Although the waveforms are different each other, both 

classes of the signals have identical power spectra [20,22],

To simulate the LFM signals distorted in the environment, 

the Fourier synthesis scheme [16,20] is employed. In the 
CW calculation with each frequency, an acoustic model 
based on the parabolic equation (PE) is used. After pressure 

fields arc computed by the PE scheme, the time sign시s are 

obtained by convolving them with source spectra at four 
ranges: 2, 5, 1() and 20 km. To the generated time signals, 

white Gaussian noise is added to test the network 

performance with the signal to noise ratio (SNR) being 0 or - 

1() or -20 dB. And then the three techniques (STFT, WT, and 

PWVD) are applied to extract feature vectors, i.e., 

spectrograms.
The environment, with which time signal simulation is 

conducted, is a simple waveguide with pressure release 

surface and penetrable fluid bottom (Fig. 1). The source 

depth is 30 m and two SSPs, being typical in winter and 

summer, are introduced. The sediment parameters are shown 

in the figure in이uding sound speed (Q), density (/%), and 
attenuation (이. They are determined by referring to Miller 

and Wolf [23].

source

zs = 30 m

C” = 1482 m/sec

P „ - 1000 kg/m3
60 m

cb1 = 1510 m/sec

\ p(.= 1600 kg/m3
\ %, - 0.5 dB/k

\ch?= 1600 m/sec

A. Model Sim니ation (a) geoacoustic data
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(b) sound speed profile

Figure 1. Input data for time signal simulation.

B. Sea Experiment

In the experiment to obtain real sea data, one sound source 

and three receivers were used. The sound source projected 

four LFM signals centered on 200, 400, 600 and 800 Hz 

with each bandwidth of 100 Hz. The signals were swept up 

for one second and down for an another second. That is, they 

were repeated to produce the two classes of signals every 
two seconds.

Table 1 summarizes the operation conditions during the 

experiment. The sound source produced si흠!!지s for more 
than 15 minutes at each depth. The source-receiver range 

was about 5.4 km. From now on, the drifting receiver is 

called as DRR and the bottom moored receiver as BMR.

Tablel. Source and receiver operation conditions during the experiment.

Source 
Depth 
(m)

Signal 
Type

Source 
Duration 

(min)
Receiver

Receiver 
Depth 
(m)

Source- 
Receiver 

Range 
(kr命

30 *LFM 19
+DRR 1,2 

"BMR
18
60

5.4

10 *LFM 15 ，BMR 60 5.4

(*) 4LFM signals centered on 200, 400, 600 and 800 Hz, each being 
swept up (class A) and down (class B) with bandwidth 100Hz

(+) drifting receivers connected each other by a 100 m-long rope
(#) bottom moored receiver

density 1600 kg/m , porosity 67.2 %, sound speed 1510 

m/sec, and attenuation coefficient 0.5 dB/A [24]. The winter 
SSP in Fig.l comes from the measured data through a CTD 

equipment.

IV. Network Structure and Training

A. Structure

The optimum number of neurons (or units) can be found 

by trying experiment with the training data sets. Training 
starts with 9 units and continues up to 50 units in the hidden 

layer. After trained, the network is forced to classify the 
noise-free and noisy signals. The noise of SNR 0 or -10 ciB 
is added to give noisy signals. Figure 2 shows network 

performance for verification by the variation of hidden unit 

for the class A signal with the SNR 니 0 dB. It can be shown 

that the overall performance is the best when the number of 

hidden units is selected to be 19. Only the STFT gives the 
best result with 30 units in the hidden layer. For increased 

number of hidden units, no practical improvement is 

achieved [20]. Hence, the network is built such that it has 19 
units in the hidden layer.

Fig나re 2. Network performance (%) by the variation of number of 
hidden units for the signals of class A and SNR-lOdB.

Two kinds of receivers, the sonobuoy AN/SSQ-57A 

(DRR1,2) and sonobuoy AN/SSQ-57B (BMR) were used. 

The latter was modified so that it could separate received 

signals into the north-south and east-west components. Two 

sonobuoys (DRR1 and 2) were connected each other by a 

100 m-long rope and allowed to drift in water keeping water 
depth of about 18 m. However, they were again connected to 
the weight on the sea bottom via the rope so that they could 
drift in a limited area. The modified receiver (BMR) was 

installed on the sea bottom where the depth is around 60 m.
The bottom of the experiment area consists of sand-silt- 

clay. Its typical geoacoustic parameters are characterized by 

The output layer has two units to classify if the received 
signal is the class A (upsweep) or B (downsweep).

The three transforms need different number of input units 

because they give spectrograms of different resolution. For 

the measured signals, the WT is not considered beca나se it 

gives non-linear resolution in frequency axis where 
comparisons are needed among the four LFM signals of 

different frequency.

B. Training Data Set

The spectrograms at range 2 km are for training and others 
for test of the network performance. The model produces 
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time signals at each 0.5 m depth so that total of 120 

spectrograms come out over water depth 60 m. The input 
parameters for the model simulation are described in Fig. 1.

Figure 3 shows how a training (or test) data set is prepared 

from a spectrogram. At each receiver depth, one can obtain 
an input data set representing the characteristics of LFM 

signal of the class A or B. The numbers of time and 

frequency bin, NT and NF, vary with each feature extraction 

technique. The spectrum data are normalized relative to the 

maximum value in the spectrogram and converted to one 

dimensional data, 자#] 伏 = 1, 2,…、NT*  NF). In practice it is 
nearly always advantageous to apply pre-processing 

transformations to the input data before it is presented to a 
network. One of the most common forms of pre-processing 
consists of a simple linear scaling of the inp니] variables. This 
is often useful if different variables have typical v시니cs that 

differ significantly. By applying a linear transformation all 
the inputs are arranged to have similar values. Figure 4

Class A

One Dimensfonaiized 

Input

x[k]. E 2 NT、NF

Figure 3. Preparing procedure of the training data set at each dept cell.

presents examples of the training data sets. They arc 

obtained by applying the PWVD over the simulated signals 

at range 2 km. As the [raining data represents more varieties 

of the target data, the network will be able to perform better 
on the real target data. In this sense, the two examples may 

be good training data sets because they give variable but 
almost independent spectra with time and input unit.

(a) Ess A

(b) class B

Figure 4. Power spectrum examples for the network training. They are 
obtained by applying the PWVD to the signals simulated at 
range 2 km.

C. Training

When the network is trained on the data sets as shown in 
Fig.4, it finishes learning typically within 3 steps where each 
step consists of 2000 iterations (Table 2). Here, the 

allowable error is 0.000005, and two temperatures of ().20 

and ().1() are employed at each step. In calculating the error, 

a cross-entrophy error function [20] is used. The network 

completes its learning in tour hours on a Pentium-chip based 
PC. This is for the STFT and it takes same order of time for 

other transforms.

Ta비e 2. Learing process of the n이work on the simulated signals of 
which feature extraction technique is the STFT.

Step
Anneal

Temperature
Eitof

Gradient
Error

Anneal
Error

1 0.20
0.1()

0.000115
0.()00024

0.()00010 0.000010

2 ().20
0.1()

01X)0088
().(XXX)11

0.0()0010 0.()00010

3 0.20
().1()

().000088
0.0()0(X)4

(}.(XXX)1() 0.000010

V. Classtfication Performance

A. Sim니ated Signals
Variation of Feat니rc Extraction Technique

The network performance for the three techniques (STFT, 

WT and PWVD) is compared. The comparisons are 
attempted over the network performance with the winter 
SSP.

Figure 5 shows three examples that enable to compare the 
performance for each technique. The first picture (Fig.5a) 

c이nes from the class B signal at 5 km and with SNR 0 dB. 

When the classifying threshold is ().8, the network 
performance reaches KM) % except for the WT where it is 
99.2 % of 12() depth c니Is. The network performs almost 
perfectly in this case. In another case of range 1() km, SNR - 
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10 dB and class B (Fig.5b), the performance ranges from 
98.3 (STFT) to 100 % (PWVD). At the worst case of range 
20 km and SNR -20 dB, the last example (Fig.5c) 아)ows that 

the network performance is 65.0 % for the STFT and 98.2 % 

for the PWVD. In particular, the performance is relatively 

poor near the surface and the bottom irrespective of the 

techniques. At ranges of 5 and 10 km, the simulated 

amplitudes are relatively small near the two interfaces [16]. 
Consequently, as strong noise is added to the signal, the 
performance is thought to be relatively poor near the two 

interfaces. Throughout the results considered, the PWVD 

gives the best performance and the STFT the worst.

3
9
n
o
 

工」
을
으

(a) range 5 km, SNR 0 dB

Figure 6 presents two spectrogram examples by the 
PWVD and STFT. They are derived from the class B signals 
at range 20 km, receiver depth 30 m, and with SNR -20 dB. 

Most of noise is filtered out while it is not in the second one. 

The STFT was applied such that it may give 64 bins from 

128 points representing the frequency range from 0 to 512 

Hz. With a 64-point overlap, the STFT produces 15 time 
slices. As the number of points to transform increases, the 

frequency resolution decreases. Hence, a compromise should 
be made between the resolutions of time and frequency. On 

the contrary, the PWVD gives the resolution of 64 (time) x 

64 (frequency). When the classifying threshold is chosen to 

be 0.8, the two spectrograms give right classification. The 
two spectrograms give network outputs of 0.90 and 0.81, 

respectively. In applying the PWVD, a sliding exponential 
window is adopted in the time-frequency domain, which 

reduces interference and avoids negative values. Inherently, 

the PWVD guarantees four times higher resolution than an 

ordinary power spectral distribution [25]. Instead, the 

computation time increases significantly in performing the 

autocorrelations and their Fourier transforms.

j ----------STFT : 98.3 %
............WT : 99.2 % 

PWVD: 100%

■6

(a) PVWD. network output 0.90
20 40 60 80 100 120

Depth Cell

(b) range 10 km, SNR -10 dB

20 40 60 80 100 120

Depth Cell

0
 

6
 

2
 

2
 

6

L

0

0

-0
-0 

로

。
을
읏

STFT : 65.0 % 
WT : 73.3 % 
PWVD： 89.2 %

-1.0 

0
20

Frequency Bin

60

(b) STFT, network output 0.81

(c) range 20 km, SNR -20 dB

Ftgure5. Examples of network outputs for the three techniques(STFT, 
WT and PWVD). They are for the class B signal.

Figure 6. Spectrogram examples of the class B signal at range 20km, 
SNR-20 dB and receiver depth 30m.
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Figure 7 shows a spectrogram example corrupted by the 
strongest noise (SNR=-20 dB). It is derived by the STFT 

over the class B signal simulated at range 5 km and receiver 

depth 4 m. The signal varies within frequency bin 19-31 but 
it is not clear enough to identify the signal because of 

surrounding noise. The network gives output of -0.61, failing 
to classify the signal with this kind of spectrogram.

0 o Frequency Bin

Figure 7. Spectrogram example on which the network fails to classify 
the signal. The network output is -0.61 where the technique 
STFT is employed. It is for the class B signal at range 5 km 
and with SNR-20 dB.

Table 3 summarizes the network performance for each 
technique. On an average, when the SNR is 0 or -10 dB, all 

the three techniques give over 95 % performance showing 
no difference between the techniques. When the SNR is -20 

dB, however, the difference is clear: the PWVD promises 

the best performance giving as high as 90.3 % on the class B 
signal.

Table 3. Network performance(%) of each feature extraction technique 
where the classifying threshold is 0.8.

Range 
(km) Technique

SNR

OdB

(硏9)

-10 dB 

3/)

-20 dB

(昨)

5
STFT 
WT 

PWVD

99.2/100
98.3/99.2
100/100

97.5/100 
98.8/94,2 
97.5/100

64.2/59.2 
52.5H2.5 
57.5/85.0

10
STFT 
WT 

PWVD

100/100
99.2/99.2
100/100

98.3/98.3
96.7/99.2
97.5/100

80.9/69.2
57.5/79.2
90.0/96.7

20
STFT 
WT 

PWVD

100/98.3
99.2/99.2
99.2/99.2

95.8/95.0
95.0/94.2
95.0/99.2

55.0/65.0
34.2〃3.3
73.3/89.2

Avg.
STFT 
WT 

PWVD

99.7/97.8
98999.2
99.7/99.7

97.2/97.8
95.8/95.8
96.7/99.7

66.7/64.5
48.1/75.0
73.6/90.3

(耶):class A/class B

Variation of SSP

A SSP in water column decides the traveling patterns of 
acoustic waves. It depends on the SSP to which direction the 
acoustic wave refracts during the propagation. The refraction 

follows the Snell s law that is a function of sound speed. The 
two extreme profiles of the winter and summer are expected 

to give an effect of different degree on the signal distortion.

The summer SSP is a typical profile measured in the 
shallow water around Korea. As shown in Fig.l, it has great 

negative gradient (ie, thermocline in terms of temperature) 
of nearly -0.9 sec-' in depth 20-30 m. As a feature extraction 

technique, the PWVD is chosen since it proved to give the 
best performance in the case with the winter SSP.

Figure 8 compares the network performance with the 
winter and the summer SSPs. At short range (5 km) and high 
SNR (0 dB), the network 아lows 98.3 % performance with 

the summer SSP while it does perfectly with the winter 

profile. When the range and the noise are increased up to 10 

km and 니。dB, the winter SSP still gives performance of 

100 % but the summer profile does o기y 87.5 % (Fig.8b). 

Most of misclassifications with the summer profile occur in 
the upper layer of the water column. As mentioned in time­

frequency distributions of signal amplitude, this may be 
sufficiently expected because the summer profile is such that 

smaller amplitudes are formed in the upper layer. The above 
two examples are for the class B signal. The last picture 

gives the results for the class A signal. In this case, the range

1.0

0.6

0.2

-0.2

-0.6

-1.0

!

一Winter SSP : 10(
Summer SSP : 98

)% f !
3 씨 :

0 20 40 60 80 100 120

Depth Cell

(a) range 5 km, SNR 0 dB, c!ass B

(b) range 10 km, SNR -10 dB. 시ass B
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6
 

1

0

0

-0
-0

9
n
o

》匸으
*

N

0 20 40 60 80 100 120

Depth Cell

(c) range 20 km, SNR -20 dB, class A

Figure 8. Examples of network outputs by the variation of SSP.

is 20 km and the SNR is -20 dB, comprising the worst 

situation for the network to identify the signal. The network 

performs up to 72.3 % with the winter SSP but。미y 58.3 % 
with the summer profile, giving 15 % difference. The 

network performance with the winter SSP shows poor 

performance near the surface and bottom, while that with the 

summer profile does in the upper layer of the water column.

Table 4 summarizes the network performance with the two 

SSPs. It can be shown that, in general, the network 
performance with the summer SSP is worse than that with 

the winter profile except the case of range 5 km and SNR - 
20 dB where the former is better than the latter. As the range 

or the noise increases, the network performs worse with the 

summer SSP. For example, when the SNR is -10 dB and the 

signal type is the class B, the network with the summer 
profile gives performance of 95.8, 87.5 and 64.2 % by the 

variation of range from 5 to 20 km. For the same condition, 

its performance with the winter profile is 100, 100 and 99.2 

%, showing no considerable change. As the noise increases 

(as in the case of range 20 km and class B signal), the 

network with the summer profile performs much worse 

아lowing only 8.3 % classification at the worst situation.

Ta비e 4. Network performance(%) by the variation of SSP.
Classification is conducted on the test dat교 via the PWVD 
where the 이assifying threshold is 0.8.

Range 
(km)

SSP

SNR

OdB

(a伊)

-10 dB 

(褂幻

-20 dB 

M)

5
Winter 

Summer
100/100 
100/98.3

97.5/100
96.7/95.8

57.5/85.0
92.5/78.3

10
Winter 

Summer
100/100
100/95.0

97.5/100
95.8/87.5

90.0/96.7
79.2/42.5

20
Winter 

Summer
99.2/99.2
100/98.3

95.0/99.2
83.3/64.2

73.3/89.2 
58.3/83

Avg.
Winter 

Summer
99.7/99.7
98.6/95.0

96.7/99.7
91982.5

73.6/90.3
76.7/43.0

(q〃釘：class A / class B

Variation of Bottom Property
To examine the effect of bottom property variations, this 

study considers an another type of bottom, which has 
geoacoustic properties of ft=1500kg/m\ 鸟듀1500 m/sec and 
ab-\.O dB/人 Compared with the type in Fig.l, the sound 
speed is decreased as much as 10 m/sec and the attenuation 

coefficient is doubled. This bottom is called as the type II 

bottom in comparison with the type I bottom in Fig.l. The 

SSP used in simulating the sign지 is the winter profile. The 
feature vectors, spectrograms, are derived via the PWVD.

Figure 9 demonstrates the bottom property effects on the 

network performance. For the class B signal at range 10 kin 

and SNR -10 dB, the two results show performance of above 
96 %. For the class B signal at range 20 km and SNR -20 
dB, however, the network shows very poor performance 

(55.8 %) with the type II bottom compared to that with the 

type I (89.2 %). The two outputs show poor performance 
near the surface and the bottom, that with the type II doing 

much more considerably.
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Fig니re 9. Examples of network outputs showing the effect of bottom 
property variation. Type I :그 1510m/s, a^G.5 dB/人 and 
type 口 ： C幻= 1500m/s, %=1.0dB〃.

Table 5 summarizes the network performance with the two 

bottom properties. In all cases except for one (range 5 km, 
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SNR -20 dB and class A), the network performs better with 
the type I. With the type II bottom, however, the network 
performance is below 60 % for both classes of the signal at 

the worst condition (range 20 km and SNR -20 dB). On an 
average, the performance with the type II bottom is poor 

compared with the type I, and it is considerable for the class 
B signal with the SNR -20 dB.

Table 5. Network performance]%) by the variation of bottom property. 
Classification is conducted on 나]e test data via the PWVD 
where the classifying threshold is 0.8.

(#) geophysical properties are shown in Fig. 1
(+) sound speed and attenuation coefficient are varied from the type 1 

bottom

(시B): class A / class B

Range 
(km)

Bottom 
Type

SNR

OdB

(时)

-lOdB 

(a*)

-20 dB 

(a〃?)

5 j 100/100 97.5/KX) 57.5/85.0
*11 99.2/100 95.8/97.5 85.0/82.5

10 100/100 97.5/100 90.0/96.7
*11 99.2/100 96.7/96.7 75.8/86.7

20 99.2/99.2 95.0/99.2 73.3/89.2
'll 97.5/97.5 95.0/89.2 59.2/55.8

Avg. 99.7/99.7 96.7/99.7 73.6/90.3
98.6/99.2 95.8/94.5 73.3/75.0

B. Measured Signal옹

Variation of Feature Extraction Technique

The classification is tried with the network trained on the 

feature vectors through the STFT and PWVD. The measured 
signal sets are four receiver cases (Table I).

Figure 10 gives the four cases of the network performance 

with the transforms used. The first three pictures 아]ow that 

the two transforms guarantee almost the same performance.
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Figure 10. Four cases of the network performance with the two 
transforms, PWVD and STFT.

The last picture 아】ows that the STFT outperforms at 
frequency 400 Hz but the PWVD at 800 Hz. In overall, on 
the measured signals, the two transforms give performance 
comparable to each other.

Table 6 gives the performance comparisons for the two 

feature vectors: spectra distributions via the STFT and 

PWVD. The network is trained on the simulated signals. 

One can see that the two transforms guarantee almost the 

same performance on an average. On the class A signal, the 
PWVD is superior to the STFT, and on the class B signal 
vice versa. Examining each performance, one can see that 

the network can classify nearly 90 % or more of the received 
signals except for the class A signals of center frequency 800 
Hz in case II and HI.

Table 6. Network performance(%) by the variation of 나le feature 
extraction technique. The classifying threshold is 0.8.

case Receiver
Source 
Depth 
(m)

Center 
Freq. 
(Hz)

STFT 
09)

PWVD
S/8)

1 BMR 30

200
400
600
800

100/100 
100/100 
100/100 

93.8/100

100/100 
100/100 
100/100 
100/97.9

11 DRR1 3()

200
400
60()
800

100/100
100/100
100/100

59.7/92.5

100/10()
100/1()0
1()0/100

64.9/93.3

III DRR2 30

200 
400 
6(X) 
8()0

100/100
100/KX)
100/KX)

60.4/91.8

100/100 
100/100 
l(X)/100 

65.7/90.3

IV BMR 10

20()
40()
600
800

1()0/100 
92.5/100 
1()0/100 
89.2/100

100/99.3 
10()/100 
100/100 
100/97.9

Avg. 93.4/99.0 95.7/98.8

(a*):class A/class B

Variation of Training Data Set

This section is directed to examining the applicability of 

sim나 1 자ed sigmils to training the network which is forced to 

perform on real measured data. That is, the network 

performance is compared to demonstrate the difference 
when the training data set is changed from the simulated 

signal to the measured one. It is often very expensive and 

difficult to obtain real sea data on which a neural network is 
trained. In this case, the analysis is needed to find the 

applicability of the simulated signals instead of the measured 
ones. Discussions are restricted to the results via the PWVD. 

As in the. previous case, the training data set is obtained on 
one of the measured signal sets. As 나iown in the PWVD of 

the signals monitored at 1 m of the source [16,20], the signal 

centered on 600 Hz has the highest SNR. Hence, as the 
training data set, this study s니eels 나此 PWVD from the 
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measured signal of center frequency 600 Hz in case I.
Figure 11 presents the training data sets via the PWVD on 

the measured signal (600 Hz in case I). Although not so 
dramatic as in the sim나aled signals, they also show some 
spectral variation with time frame and input unit, which is 

probably enough to accommodate variations or distortions of 
other test data sets. The two data sets themselves are also 

injected into the network and made to be classified by the 

network.
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Fig니re 12. Four cases of the network performance by the variation of 
training data set. 
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sets except for that at frequency 800 Hz. In the third picture, 

the measured data set gives a little better performance. In the 

last figure, however, the simulated one presents better results 
at the frequencies of 200 and 400 Hz.

Table 7 summarizes the network performance by the 

variation of training data set. On some cases, the network 

performs worse on the simulated training data (for example, 

800 Hz in case II and HI). However, 나)e network 아lows 
better or comparable performance on the average for other 
cases, promising the applicability of the network trained on 
the simulated data. The network, trained on the measured 

signals, gives slightly better results than that on the 
simulated, the improvement being 1.40 % and 0.64 % on the 

average for the class A and B signals, respectively.

Table 7. Network perfbrmance(%) by the variation of training data set.
The classifying 아1 이d is 0.8.

Time Frame

0 0 hput Neuron

(b) case I, 600 Hz: PWVD, class B

Fig니re 11. Power spectra of the real data on which the network is 
trained.

Figure 12 presents four selected cases of performance with 

the training data sets varied. The first three results show that 
little differences in performance exist between the two data

(a) case I, class A (b) case II, class B

(«/A): class A / 시ass B

case Receiver
Source 
Depth 

(m)

Center 
Freq. 
(Hz)

Training Data Set

simulated
(的)

Measured 
(a/8)

I BMR 30

200
400
600
800

100/100 
100/100 
100/100 
100/97.9

100/100 
100/100 
100/100 
100/97,9

II DRR1 30

200
400
60()
800

100/100
100/100
100/100

64.9/93.3

100/100
100/100
100/100

85.1/95.5

III DRR2 30

200
4()0
600 
8()0

100/100 
100/100 
1()0/100 

65.7/90.3

100/100 
100/100 
100/100 

84.3/96.3

IV BMR 10

200 
40() 
600 
80()

100/99.3 
100/100 
100/1()0 
100/100

93.8/99.3 
93.2/100 
100/100 
100/100

Avg. 95.7/98.8 97.1/99.4

Variation of Center Frequency

It has been known that there exist the optimum frequencies 
at which wave transmission is best [22]. Optimum frequency 

is a general feature of ducted propagation in the ocean. It 
occurs as a result of competing propagation and attenuation

0 0
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mechanisms at high and low frequencies. In the high- 

frequency regime there exist increasing volume and 
scattering loss with increasing frequency. At lower 

frequencies the situation is complicated. With increasing 
wavelength the efficiency of the duct to confine sound 

decreases (the cut-off phenomenon). Hence, propagation and 
attenuation mechanisms outside the duct (in the sea bottom) 

become important. In this study, the analyses are not tried 

any more on the propagation loss or the optimum frequency 
because they somewhat deviate from the topic. An analysis 
is attempted on the network performance in relation to only 
the SNRs of the four center frequencies.

Table 8 summarizes the performance by the variation of 

center frequency. The overall performance reaches over 90 

% in all cases except for the case of frequency 800 Hz and 

class A where it is 87.2 %. Among the four center 

frequencies, the signals centered on 600 Hz are classified 
perfectly. When the network is trained on the measured data, 

the signal of frequency 600 Hz is chosen for the training. 

Thus, the network performance on the measured data of 600 
Hz is in fact the verification results on the training data sets 
themselves. This perfect outputs may be also anticipated 
from the monitored signals [16,20] where the SNR is the 

highest on 600 Hz. The sound source was operated to have 

source levels of maximum 168 dB on 200 Hz and minimum 

150 dB on 800 Hz [24], but the SNR is the highest on 600 
Hz.

Table 8. Network performance]%) by the variation of center frequency. 
The classifying threshold is 0.8.

case
Training 
Data Set

Center Frequency
Avg. 
3/8)200 Hz 

(成)
400 Hz
(이8)

600 Hz 
〈이 B)

800 Hz 
(洲)

100/100 100/100 100/100 100/97.9 100/99.5

I Simulated
100/100 100/100 100/100 64.9/93.3 91.2/98.3
100/100 100/100 100/100 65.7/90.3 91.4/97.6
100/99.3 93.8/99.3 100/100 100/100 l(X)/99.8
100/100 100/100 100/100 97.3/100 99.3/100

n Measured
100/100 100/100 100/100 85.1/95.5 96.3/98.9
100/100 100/100 100/100 84.3/96.3 96.1/98.9

93.8/99.3 93.2/100 100/100 100/100 96.8/99.8

Avg. 99.2/99.8 99.2/100 100/100 87.2/96.7 96.4/99.1

(耶):class A / class B

VI. Conclusions

This study attempts to test the classifying performance of a 
neural network and thereby examine its applicability to the 
signals distorted in a shallow water environment. Linear 

frequency modulated (LFM) signals are simulated by using 
an acoustic model and also measured through sea 
experiment.

After trained on the simulated signals over water depth, the 

network gives over 95 % performance with 나le SNR being 

叩 to -1。dB. Among the transforms, the PWVD presents the 

best performance particularly in a highly noisy condition. 
The network performs worse with the summer sound speed 
profile than with the winter profile. It is also expected to 

present much different performance with the variation of 
bottom properties.

When the network is trained on the simulated signals, it 

classifies over 90 % of the measured signals. On the 
contrary, when the network is trained on the measured 
signals which have the highest SNR, it gives a little better 
results than that trained on the simulated data.

In conclusion, the simulated signals are successfully 

applied to training a neural network, and the trained network 

performs well in classifying the signals distorted by a 

surrounding environment and corrupted by noise.
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