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Classification of Environmentally Distorted Acoustic Signals in Shallow Water
Using Neural Networks: Application to Simulated and Measured Signals

*Young-Nam Na, *Joung-Soo Park, *Duck-Hong Chang and **Chun-Duck Kim

Abstract

This study atiempts to test the classifying performance of a newral network and thereby examine its applicability to the signals
distorted in a shallow water environment. Linear frequency modulated (LFM) signals are simulated by using an acoustic model
and also measured through sea expenment. The network is constructed 10 have three tayers and trained on both data sets. To get
normalized power specira as feature vectors, the study considers the three transforms: short-time Fourier transform (STFT),
wavclet transform (WT) and pseudo Wigner-Ville distribution (PWVD). After trained on the simulated signals over water depth,
the network gives over 95 % performance with the signal to noise ratio (SNR) being up to -10 dB. Among the transforms. the
PWVD presents the best performance particularly in a highty noisy condition. The network performs worse with the summer
sound speed profile than with the winter profile. It is also expected (o present much different performance by the variation of
bottom property. When the network is trained on the simulated signals, it classifies over 90 % of the measured signals. On the
contrary, when the network is trained on the measured signals, it gives a little better results than that trained on the simulated data.

[n conclusion, the simulated signals arc successfully applied (o training a neural network, and the trained network performs well

in classifying the signals distorted by a surrounding environment and corrupted by notse.

[. Introduction

There has been an inercasing interest in using newvral
networks 10 classify passive sonar data [1-5]. Several papers
dealing with transient signal classification have been
published in recent proceedings and joumnals. For example,
Desai and Shuzeer [6], Hemminger and Pao [7] found a
back-propagation (BP) network (o be useful for classifying
targets based on transients. Kundu et al.[8] successtully used
a hidden Markov model and a multilayer perceptror network
to classify transtent signals. Meanwhile, Na et al.[9,10]
found that a BP network could be successtully appiicable to
tracking tonals of low frequency, and cven to filtenng out
ambient noise from underwater noisy signals,

While these studics have been encouraging, there is
considerable need to investigate further the use of neural
netwerk in the analysis of passive sonar data. In particolar,
while the classification of real occan data is the uhimate goal
of the sonar classitier, it is very difficult to access neura
network capabilities when the nature of the source data is not

well understood. Moreover, most of these studies have not
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considered or defined environmental conditions in which
acoustic waves propagate. Consequently, it has been hard to
estimate the applicability of neural networks to the signals
distorted by the surrounding cnvironment. The signals
incvitably undergo distortions by the environment in which
they propagate.

Few papers have been published to deal with the signals
distorted by surrounding environment. Field et al.[11] tried
to classify the signals distorted by the environment and
found that the network was able to recognize the received
signals with ) % accuracy. However, the network was
tested under limited envirormental conditions of no noise
and relatively short range (5 km)} compared with the water
depth (1.3 km). In these conditions, the traveling waves
suffcr one surface ar/and bottom interaction, yielding small
distortion and loss. Moreover, the study dealt only simulated
signals and covered small portion of water column, the
coverage being 125 m from the bottom.

This study assumces the environment to be shaliow
water, and considers environmental varations in sound
speed profile (SSP) and bottom property. The linear
frequency modulated {LLFM} signals are simulated at four
range steps (2, 5, 10 and 20 km) and then white Gaussian

noise is added to test the network performance on noisy
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signals. The LFM signals are chosen becausc they are
relatively simple 1o be generated but cnable to analyze the
distorted signals with case. They are regarded o be enough
to accommodate the signal distortion caused by the
environment. Time signals are simulated through an acoustic
model to accommodate the cnvironmental effects. To the
simulated stgnals, noise is added to produce noisy signals. In
addition, real measured signals are employed to test the
network performance. The first goal of the study is directed
to examining the applicability of the simulated signals to
train a network. The second one is to examine the
applicability of the traincd network to the simulated and

measured signals.

II. Theory

A. Spectrum Estimation for Non-Stationary Signals

Many temporal signals that are inherently non-stationary
can be regarded as stationary if viewed over a short period of
time. Since the frequency content of stationary signals is 4
very powerful method of description, the time mstocy of the
power spectrum is an impoertant tool for characterizing
signals whose statistical properties are changing slowly with
time. This method of charactcrization has been especially
important for speech processing and for sonar signal
processing [12-15).

In this swdy, three methods arc considered: short-time
Fourier transform (STFT), pseudo Wigner-Ville distribution
{(PWVD), and wavelet transform {WT). The theory on
PWVD is described in the accompanying paper [16]

Short-Time Fouorer Transform (STFT)

The most direct approach to computing the time history of
the power spectrum is to view the recorded data through a
moving average window whose length corresponds to the
time over which the data can be assumed to remain
stationary. The Fourier transform of the windowed data is
known as the STFT. The STFT of the given data is defined
by [17]

X[n0]= lek]wln—kle‘f‘“‘. ()
F

where the window extends from n-L to n+L. The power

spectral estimate is given by the short-time periodogram

. I
P =—( X[n@)F
> (n.w] TR [n®) 2)

The time history of the spectrum comprises the so called

spectrogram (or lofargram in sonar signal processing).

Wavelet Transform (WT)

Instead of decomposing a signal into harmonic functions
e’* in the Fourier transform, in the WT, one can classify a
signal by a senes of orthogonal basis functions of finite
tength. Recently, much attention has been directed to this
new transform, especially in signal and image processing
[18]. An important property of the WT is its ability to
caplurc major characieristics of transient or non-siationary
signals, simply by changing the scales of local structure in
the time-scale plane.

For a time signal s(s), the WT may be expressed as

Cla,py= —— ?(’—i)s(r)dr, 3)
Jado' a

where Wis an analyzing wavelet, a and b denotc time
dilation and translation, respectively.

This study employs the wavelet such that its frequency
axis is partitioned into successive octaves called scales. For
computational efficiency, integral power of 2 is used for
frequency pantitioning so that the wavelet is scaled and
ranslated as P (2'-k), where i, k are integers. The analyzing
wavelet Y(2'r-k} is obtained from ¥ () by dilating 1/2' and
manslaung &/2". In this case, the WT becomes

Il (g t—b
2 . h)=—— — ) A {4
c@.br= [ st )

As a mother wavelet W, a modulated Gaussian [18] is
employed

W) = e h (5)

The Fourier transform of Eq. (5) has the form

‘i’(a.w) _ (Je—“"w"'*' 7 b3u’!2. ()
where @/a is analysis frequency. The bandwidth of the WT,
BW, is proportional 10 1/a, thus comprises a constant relative
bandwidth since bandwidth divided by analysis frequency is

constant.

B. Conjugate Gradients (CG)

The problem of minimizing continuous, differentiable
functions of many variables is one that has been widely
studied, and many of the conventional approaches are
dircctly applicable to the training of neural networks. This
studly introduces the CG algorithm by Johanson e al.[19].

For a quadratic error function, an iterative equation may be

derived in the following fosmn through some manipulation [2(]
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Wiy =W rad, N

Here, w, and d; denote the powmt vector of j-th step, and
vector which is mutually conjugate with respect to Hessian
matrix H, respectivcly. This represents a succession of steps
parallel to the conjugate directions, with step lengths
controlled by the parameters &.

After some manipulations arc made, & can be written in
the form (20]

,
! J

It can be shown that if the weights are incremented using Eq.
(7) with the &, given by Eq. (8), then the gradient vector g, at
the j-th step is orthogonal to all previous conjugatc
directions | 19]. Tt therefore totlows that after steps the
components of the gradicnt along all directions have been
made zero, and so onc will have amived at the minimum of
the quadratic form.

The problem is how to construcl a set of mutually
conjugate directions. This can be achicved by selecting the
first direction to be the ncgative gradient d,= g,, and then
choosing cach successive direction to be linear combination

of the curreat gradient and previous search direction,
A =8t ﬁ,dr (9

The coefficient 8 can be found by the same procedure as

with @,
T
8,‘+|de
i S 10
B; aTHA, (10)

By examining Eqs.(7) and (9), one can notice that they are
very similar 1o traditional BP algorithm with momentum.
However, there are twa differences: In traditional BP, the
step size s fixed, while in the CG algorithm, it is carefully
chosen to be the line minimum along the scarch direction.
Also, in traditional BP the momentum is usually fixed. [n the
CG algorithm, the momentum is optimally adjusted tor cach
new step. These are actwally two quite significant
differences, and they account for the typicatly huge
difference in performance, In order 10 gain a more global
view, an simufated annealing algorithm is employced in
addition to the CG which tends 1o sink into any convenicnt

minimum | 19,20].

1. Signal Simulation and Measurement

A, Model Simulation
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This study considers a LFM signal of center frequency 200
Hz and bandwidth 100 Hz so that the signal sweeps up or
down in 150-250 Hz. The source signal is gencrarcd by the

following equation | 21]
sy = sin2r(f 0+ " 12)), (1

where £, = center (requency (200 Hz), m= bandwidth (100
Hz}. For the upsweep {class A) signal, the tine goes from
T/2 10 772 and for the downsweep (class B) signal from 7/2
1o —7/2. The sampling frequency is 1024 Hz so that 1024
sequences are generated over a period ol one second.

Belure the simulation of signals, a modified Hamtning
window is applied to the signals generated by Eq. (1 1). The
window is taken at the beginning and end of each 10 %
sweeping period. This leads to reduce the energy leakage
caused by the disconlinuity of the finite record of data.
Although the waveforms are differcnt cach other, both
classes of the signals have identical power spectra {20,22).

To simulate the LFM signals distorted in the environment,
the Fouricr synthesis scheme [16,20] is employed. In the
CW caleslation with cach frequency, an acoustic model
hased on the parabolic equation (PE) is used. After pressure
ficlds arc computed by the PE scheme, the time signals are
abtanced by convolving them with source spectra at four
ranges: 2, 5, 10 and 20 km. To the generated ume signals,
white Gaussian noise is added to test the network
performance with the signal 10 noise ratic (SNR) being 0 or -
10 or -20 dB. And then the three techniques (STFT, WT, and
PWVD) are applicd to cxtract feature veclors, i.e..
spectrograms.

The environment, with which time signal simulation is
conducted, is a simple waveguide with pressure releasc
surface and penetrable fluid bottom (Fig.1). The source
depth s 30 m and two SSPs, being typical in winter and
summer, are introduced. The sediment parameters arc shown
in the figure including sound speed {C,), density (,2,). and
attenuation { @), They are determined by referring to Miller
and Wolf [23].

i :’
souree l .
. | Cu= 1482 misec 60
Lot 1000 kgm?
2s=30m i
- ‘ hd
i oy = 1510 misec h
l 124, = 1600 kgyem®
: v, = 005 d@'a 40m
¢,,= 1600 nvsec

{a) geoacaushc dala
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Figure ). Input data for time signa) simulaiioa.

B. Sea Experiment

in the experiment to obtain real sea data, one sound source
and three receivers were used. The sound source projected
four LFM signals centered on 200, 400, 600 and 800 Hz
with each bandwidth of 100 Hz. The signals were swept up
for one second and down for an another second. That is, they
were repeated to produce the two classes of signals every
two seconds.

Table 1 summarizes the operation conditions during the
cxperiment. The sound source produced signals for more
than 15 minutes at each depth. The socurce-recciver range
was about 5.4 km. From now on, the drifting receiver is
called as DRR and the bottom moored recciver as BMR.

Table1. Source and receiver operation conditions during the experiment.

Source Signal Source Receiver | Source-
Depth ‘.rf,pc Duta'lion Receiver | Depth Rﬁgﬁ"’:’
{m) {min) () km
'DRR 1,2 8
* ‘
30 LFM 19 ‘BMR 0 54
10 *LFM 15 ‘BMR 60 54

(*) 4LFM sigpals centered on 200, 400, 600 and 800 Hz, each being
swept up (class A) and down (class B) with baodwidih 100Hz

(+) drifting receivers connected each other by a 100 m-long rope

(#} botiom moored receiver

Two kinds of receivers, the sonobuoy AN/SSQ-57A
(DRR1,2) and sonobuoy AN/SSQ-57B (BMR) were used.
The latter was modificd so that it could separate received
signals into the north-south and casi-west components. Two
sonobuoys {DRR1 and 2) were connected each other by a
100 m-long rope and allowed to drift in water keeping water
depth of about 18 m. However, they were again connected to
the weight on the sea bottom via the rope so that they could
drift in a limited area. The modified receiver (BMR) was
installed on the sea bottom where the depth is around &0 m.

The bottom of the experiment area consists of sand-silt-

clay. Its typical geoacoustic parameters are characierized by

density 1600 kg/m’, porosity 67.2 %, sound spced 1510
m/sec, and attenuation coefficient (0.5 dB/ ) [24]. The winter
SSP in Fig.1 comes from the measured data through a CTD

equipment.
IV. Network Structure and Training

A. Structure

The optimum number of neurens {(or units) can be found
by trying experiment with the training data sets. Tratning
starts with 9 units and continues up to 50 upits in the hidden
layer. After trained, the network is forced to classify the
notse-free and noisy signals. The noise of SNR 0 or -10 dB
is added to give noisy signals. Figure 2 shows nctwork
performance for verification by the variation of hidden unit
for the class A signal with the SNR -10 dB. It can be shown
that the overall performance is the best when the number of
hidden uvnits is selected to be 19. Only the STFT gives the
best result with 30 units in the hidden tayer. For increased
number of hidden units, no practical improvement is
achieved |20]. Hence, the network is built such that it has 19
units in the hidden layer.

100.0
99.5
99.0
98.5
98.0
875 -

970 F - e} 0= PWVD L

985 |- J-e=WT

96.0

Performance (%)

9 19 30 50
Hidden Unit

Figure 2. Network performance (%) by the variation of number of
hidden units for the signals of class A and SNR-10dB.

The output layer has two units to classify if the rcceived
signal is the class A (upsweep) or B (downsweep).

The three transforms need different number of input units
because they give spectrograms of different resolution. For
the measured signals, the WT is not considered because it
gives non-linear resolution in frequency axis where
compatisons are needed among the four LFM signals of

different frequency.

B. Training Data Set
The spectrograms at range 2 km are for training and others

for test of the network performance. The madel produces
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time signals at each (.5 m depth so that total of 120
specirograms come out over water depth 60 m. The input
parameters for the model simulation are described in Fig.J.
Figure 3 shows how a tratning (or tesl) data set is prepared
from a spectrogram. At each receiver depth, one can oblain
an input data sct representsng the characteristics of LEM
signal of the class A or B. The numbers of time and
frequency bin, NT and NF, vary with cach feature extraction
tlechnique. The spectrum data are normalized relative (o the
maximum value in the spectrogram and convened to one
dimensional data, x|&| ¢k = 1, 2.. NT*NF). In practice 1L is
ncarly always advantageous to apply pre-processing
transformations to the input data betore it s presented to a
network. (One of the most common forms of pre-processing
consists of a simple iincar scaling of the input variables. This
is often useful it different vartables have typical values that
differ significantly. By applying w linear ransformation all

the inputs are arranged to have similar values, Figure 4

Class B Class &
{downsweep) {upsweep)

¥, <
% - i

Time Bin
(=12, .NT)

One Dimensionahzed
® Input

MK K=F2  NTNF

E N )

(M4

Frequency Bin (=1.2,. NF)

Figure 2, Preparing procedure of the trainimg data set at cach dept celi

presents cxamples of the training data seis. They are
obtained by applying the PWVD over the simulated signals
at range 2 kv, As the training data represents more varietics
of the target data, the network will be able 10 perform better
on the real target data. [n this sense, the two examples may
be good training data scis because they give variable but

almost independent spectra with ime and input toit.

fa) class &
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(b)ctass B

Figure 4. Power spectrum examples for the network training. They are
obtained by applymg the PWVD 10 the signals simulued a

range 2 km.

C. Training

When the network is trained on the data sets as shown in
Fig.4, it finishes learning typically within 3 steps where each
step consists of 2000 iterations (Tabie 2). Here, the
allowable error 1s 0000005, and (wo temperatures of (.20
and .10 arc employed at cach step. In calculating the error,
it cross-cntrophy error tunction [20] is nsed. The network
completes its kaming tn [our hours on a Pentium-chip based

PC. "Fhis is 1or the STEFT and it takes same order of tme for

other transfornss.

Table 2. Leanng process of the network on the simulaed signats of

which featnre exiraction wechnigue is the STFT

Stcp V.:"f-\nm:al Eiror (';[";Idlcnl . “A!meu]
o Temperature Error \irror
_'_ _ ::f:: 2?&:&;3 0000010 ”(.>..m00|0
: ﬂfﬂ :}':}:mﬁ Q000 | 0.000010
K 010 (t;::::m 0000010 | 0.000010
V. Classification Performance

A. Simulated Signals

Vartation of Feature Extraction Technique

The network: pertormance tor the three technigues (STFT,
WT and PWVD) s compared. The comparisons are

attempted over the network performance with the winter

SSP.

Figure 5 shows three examples that enable to compare the
performance tor cach technique. The first picture (Fig.5a)
comes trom the class B signal az 5 km and with SNR 0 dB.
When the classifying threshold s 0.3, the network
pertormance reaches 100 % except for the WT where it is
99.2 % of 120 depth cells, The network performs almost

perlectly inthis case. Inanother case of range 10 km, SNR -
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10 dB and class B (Fig.5b), the performance ranges from
98.3 (STFT) to 100 % (PWVD). At the worst case of range
20 kxm and SNR -20 dB, the Yast example (Fig.5c) shows that
the network performance is 65.0 % for the STFT and 98.2 %
for the PWVD. In particular, the performance is relatively
poor near the surface and the bottom irrespective of the
techniques. At ranges of 5 and 10 km, the simulated
amplitudes are relatively small near the two interfaces [16].
Conscquently, as strong noise is added to the signal, the
performance is thought to be rclatively poor near the two
interfaces. Throughout the results considered, the PWVD
gives the best performance and the STFT the worst.

1.0 : 7
. 06 | i i
=1
3 02 j- 4| ——STFT 1100%
P N TP WT :982%
£ 02 | - PWVD: 100 %
[
z
-06
10 i i
0 20 40 60 80 100 120
Depth Ceill
(a)range 5 km, SNR 0 dB
b=
=3
3
(e]
:
z
0 20 40 80 80 100 120
Depth Cell
{b) range 10 ken, SNR -10 dB
10 T
é? B E
= 08 M R i
o 02 E ;
P HE [
202 Ty
Q 5 ¥
)4 3
06 s é
-10 . .

0 20 40 60 8 100 120
Depth Cek

{c) range 20 km, SNR -20 9B

Figure S, Examples of network outputs for the three technigues(STFT,
WT and PWVD). They are for the class B signal.

Figure 6 presents (wo spectrogram examples by the
PWVD and STFT. They are denved from the class B signals
at range 20 km, recciver depth 30 m, and with SNR -20 dB.
Most of noisc is filtered out while it is not in the second one.
The STFT was applicd such that it may give 64 bins from
128 points representing the frequency range from 0 to 512
Hz. With a 64-point overlap. the STFT produces 15 time
slices. As the number of points to transform increases, the
frequency resolution decreases. Hence, a compromise should
be made between the resolutions of time and frequency. On
the contrary, the PWVD gives the resolution of 64 (time)} x
64 (frequency). When the classifying thresheld is chosen to
be 0.8, the two spectrograms give right classification. The
two spectrograms give network outputs of 0.90 and 0.81,
respectively. In applying the PWVD, a sliding exponential
window is adopted n the time-frequency domain, which
reduces interference and avoids negative values. Inherently,
the PWVD guarantees four times higher resolution than an
ordinary power spectral distribution |25]. Instead, the
computation time increases significantly in performing the

aulocorrelations and their Fourier transforms.

Specirum
S o~

2
Time Bin 10 A\

[¢] ‘10 Frequency Bin

{a) PWVD, nelwork oulpul 0.90

Tiene Bin N e g

(LY Frequency Bin

(b} STFT, netwark outpul 0.81

Figure 6. Spectrogram examples of the class B signal at range 20km,
SNR-20dB and receiver depth 30m.
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Figure 7 shows a spectrogram example corrupted by the
strongest noise {SNR=-20 dB). It is derived by the STFT
over the class B signal simulated at range 5 km and receiver
depth 4 m. The signal varies within frequency bin 19-31 but
it is not clear enough to identify the signal because of
surrounding noise. The network gives output of -0.61, failing
to classify the signal with this kind of spectrogram.

Time Bin N oo

¢ 9 Frequency Bin

Figure 7. Spectrogram example on which the neiwork [ails to classily
the signal. The network output is -0.61 where the technique
STFT is employed. It is for the class B signal at range 5 km
and with SNR-20 dB.

Table 3 summarizes the network performance for each
technigue. On an average, when the SNR is 0 or -10 dB, all
the three techniques give over 95 % performance showing
no difference between the techniques. When the SNR is -20
dB, however, the difference is clear; the PWVD promiscs
the best performance giving as high as 90.3 % on the class B
stgnal.

Table 3. Network performance(%) of each feature extraction technique
where the classifying threshold is 0.8.

R SNR
(::'ng; Technique 0dB -1048 ~20dB
(o) (@p) (a8)

STFT 99.2/100 975100 | 64.2/59.2

5 wT 98.3/99.2 988942 | 525725

PWVD 100/100 97.5/100 | 57.5/85.0

STFT 100/100 98.3983 | 80.5/69.2

10 wT 99.299.2 96.7M92 | $7.5/79.2

PWVD 1007100 915100 | 90.0/96.7

STFT 100/98.3 95.8/950 | 55.0065.0

20 WT 99.2/99.2 95.0/942 | 3427733

PWYVD 99.2199.2 95.0092 | 7335892

STFT 99.7/97.8 9720978 | 667645

Avg. WT 98.9/99.2 958058 | 4817750

PWVD 99.799.7 967997 | 73.6/90.3

(&f2):class Afclass B

Variation of SSP
A SSP in water column decides the wraveling patterns of
acoustic waves. It depends on the SSP to which direction the

acoustic wave refracts during the propagation. The refraction

The Journat of the Acoustical Society of Kosea, Vol. 17. No. LE(1998)

follows the Snell’ s law that is a function of sound speed. The
two extreme profiles of the winter and summer are ¢xpected
to give an effect of difterent degree on the signal distortion.

The summer SSP is a typical profile measured in the
shallow water around Korea. As shown in Fig. L. it has great
negative gradient {i.c., thermocline in terms of temperature)
of nearly -0.9 sec™ in depth 20-30 m. As a feature extraction
technique, the PWVD is chosen since it proved to give the
best performance in the case with the winter SSP.

Figure 8 compares the network performance with the
wintcr and the summer SSPs. At short range (5 ki) and high
SNR (0 dB), the network shows 98.3 % performance with
the summer SSP while it does perfectly with (he winter
profilc. When the range and the noise are increased up to 10
km and -10 dB, the winter SSP still gives performance of
100 % but the summer profile does only 87.5 % (Fig.8b).
Most of misclassifications with the summer profile occur in
the upper tayer of the water column. As mentioned in time-
frequency distributions of signal amplitude, bis may be
sufficicntly cxpected because the summer profile is such that
smiller amplitudes are formed in the upper layer. ‘The above
two examples are for the class B signal. The last picture

gives the results for the class A signal. In this case, the range

1.0

06
5
2 :
< |~ Winter SSP - 100% | -
g 02 - - Summer SSP - 983% i
[ H
=z

08 |

10 : .

0 20 40 60 8 100 120

Depth Cel

{a} range 5 km, SNR 0 dB, class B

Winter SSP - 100% = -
Summer SSP: 87.5% ;.

Network Qutput

10 5
0 20 40 60 80 100 120
Depth Celt

{b) range 10 km, SNR -10 dB. class B
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Network Qutput

60 80 100 120
Depth Cel

0 20 40

{c) range 20 km, SNR -20 dB, class A

Figure 8. Examples of network outputs by the variation ot SSP.

is 20 km and the SNR is -20 dB, comprising the worst
situation for the network to identify the signal. The network
performs up to 72.3 % with the winter SSP but only 58.3 %
with the summer profile, giving 15 % difference. The
network performance with the winter SSP shows poor
performance near the surface and bottom, while thut with the
summer profile does in the upper layer of the water column.
Table 4 summarizes the network performance with the two
SSPs. It can be shown that, in general, the network
performance with the summer SSP is worse than hat with
the winter profile except the case of range 5 km and SNR -
20 dB where the former is better than the latter. As the range
or the noise increases, the network performs worse with the
summmer SSP. For example, when the SNR is -10 dB and the
signal type is the class B, the network with the summer
profile gives performance of 95.8, 87.5 and 64.2 % by the
variation of range from 5 to 20 km. For the same condition,
its performance with the winter profile is 100, 100 and 99.2
%, showing no considerable change. As the noise ncreases
(as in the case of range 20 km and class B signal), the
network with the summer profile performs much worse
showing only 8.3 % classification at the worst situation.
Table 4. Network performance(%) by the variation of SSP.

Classification is conducted on the test data via the PWVD
where the classifying threshold is 0.8,

N SNR
ange
(ken) Ssp 0dB -10d8 -20dB
(dB) («p) ' 8)
P Winter 100/100 97.5/100 57.5/85.0
Summer 100/98.3 96.7/95.8 92,5183
0 Winter 100/100 97.5/100 90.0196.7
Surnreer 100/95.0 95.8/87.5 7921428
20 Winter 99.2/99.2 95.0199.2 73.3/89.2
Summer 100/98.3 83.3/64 2 58.3/83
Av Winter 99.7/59.7 96.7/99.7 73.6/90.3
& | summer | 986050 91.9/82.5 76.7143.0

(98):class A/class B

Vanation of Bottom Property

To examine the effect of bottom property variations, this
study considers an another type of bottom, which has
geoacoustic properties of 4,=1500kg/m', C,=1500 nv/sec and
a,=1.0 dB/A. Compared with the type in Fig.1, the sound
speed is decreased as much as 10 m/sec and the attenuation
coefficient is doubled. This bottom is called as the type II
bottom in comparison with the type 1 bottom in Fig.1. The
SSP used in simulating the signal is the winter profile. The
feature vectors, spectrograms, are derived via the PWVD.

Figure 9 demonstrates the bottom property effects on the
network performance. For the class B signal at range 10 km
and SNR -10 dB, the two results show performance of above
96 %. For the class B signal at range 20 km and SNR -20
dB, however, the network shows very poor performance
(55.8 %) with the type 11 bottom compared to that with the
type I (89.2 %). The two outputs show poor performance
near the surface and the bottom, that with the type Il doing

much more considerably.
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Figure 9. Examples of network outputs showing the effect of bottom
property variation. Type I :Cp,;=1510m/s, 2p=0.5 dB/A, and
type [ :Cp,;=1500ms, a5 =1.0dB/A.

Table 5 summanzes the network performance with the two

bottom propertics. In all cases except for one (range 5 km,
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SNR -20) dB and class A), the network performs better with
the type 1. With the type I bottom, however, the network
performance is below 60 % for both classes of the signal at
the worst condition {range 20 km and SNR -20 dB). On an
average. the performance with the type [1 bottom is poor
compared with the type 1, and i 1s considerable for the class
B signal with the SNR -20 dB.

Table 5. Network performance(%) by the variation of bollom propeny.
Classification s conducted on the tesl data via (he PWVD
where the classifying threshold is 0.8.

R B SNR
_ ot .
om | Type | 0B 1098 2048
(a3 {af ) (@)
s q 100100 | 97.57100 57.5/85.0
) gl 99.2/100 95.4/97.5 85.0482.5
10 | 100/100 97.5/100 900967
( 99.2/100 Y6.7/96.7 75.8/86.7
20 4 99.299.2 95.0/99.2 73.3/89.2
“l 97.597.5 95.4/89.2 $9.2/55.8
Av il 99.7/99.7 96.7/99.7 73.6/90.3
& I 986902 | 958945 | MTSO

(#} geophysical properties are shown in Fig. |

(+) sound speed and attenvation coeflicient are varied from the ype
bottom

{aff}: class A / class B

8. Measured Signals

Variation of Feature Extraction Technique

The classification is tried with the network trained on the
feature vectors through the STFT and PWVD. The measured
signal sets are four receiver cases (Table 1),

Figure 10 gives the four cases of the nctwork performance
with the transtorms used. The first three pictures show that

the two transtorms guarantee almost the same performance.

8
g
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Figure 10. Four cases of the netwark perforinance with the two
transforms, PW VD and STFT.
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The last picture shows that the STET outperforms at
frequency 404 Hz but the PWVD at 800 Hz. In overall, on
the measured signals, the two transforms give performance
comparable to cach other.

Table 6 gives the performance comparisons for the two
feature vectors: spectra distributions via the STFT and
PWVD. The network is trained on the simulated signals.
Onc can see that the two transforms guarantee almost the
same performance on an average. On the class A signal, the
PWVD is supcrior to the STFT, and on the class B signal
vice versa. Examining each performance, one can sec that
the network can classify nearly 90 % or more of the received
signals except for the class A signals of center frequency 800

Hz in case 11 and [

Table 6. Network performance{%) by the varialion of the feature
extraction lechnique. The classifying threshold is 0.8

Source Center
. 5 WVD
case | Receiver Depth Freq. STET P
(my (H2) (@/f} (a/f)
B 1 200 007100 | 1007100
400 1007100 | 1007100
Rl
: BMR ) 600 100/100 | 1007100
800 438100 | 100979
200 W00A00 | 1007100
a0 100 | 1007100
3
t PRRI 0 600 100/100 | 1067100
800 5970925 | 69.9/03.3
200 100100 | 1007100
400 000G | 1007100
YRR2 :
n DRR o 600 WOA00 | 10Ky 100
800 60.4/91.8 | 65.7/90.3
200 07100 | 100993
400 925100 | 10100
W KMR 10 600 0100 | 1007100
o 800 8024100 | 10097.9
Avg. 93,4990 | 95.7/98.8

(@) class A Jclass B

Vanation of Training Data Set

This section is directed to examining the applicability of
simulated signals to training the nctwork which 1s forced to
perform on real measured data. That is, the network
performance is compared o demonstrate the difference
when the traming data set is changed from the stmuolated
signal 10 the measured one. It is often very expensive and
difficult to obtain real sea data on which a ncural network is
traincd. In this case, the analysis is needed to find the
apphcability of the sirnulated signals instead of the measured
ones. Discussions arc restricted to the results via the PWVD,
As in the previons case, the training data sct is obtained on
onc of the measured signal sets. As shown in the PWVD of
the signats menitored at 1 m of the source | 16.20), the signal
centered on 600 Hz has the highest SNR. Hence, as the

lraiming data sct. this study sclects the PWVD from the
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measured signal of center frequency 600 Hz in case 1.

Figure 11 presents the training data sets via the PWVD on
the measured signal (600 Hz in case [). Although not so
dramatic as in the simutated signals, they also show some
spectral variation with time frame and input wnit, which is
probably enough to accommodate vanations or distortions of
other test data sets. The two data scis themselves are also
injected into the network and made to be classified by the

network,

MNorral:pes Specirumm

Time Frame g

¢ g hiaa Neuron

{a)case | GO0 Hz PWVD. class A

=]
[=3 7

Marmalized Spectum:

Time frame ”
X 50
9 5 hpat Mewon

ib)case (, BCO M2 PWVD, class T

Figure 11. Power specira of the real data on which the network is
trained,

Figure 12 presents four selected cases of performance with
the training data sets varied. The first three results shiow that

little differences in performance exist between the 1wo data
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Flgure 12, Four cases of the network performance by the vanation of
training data set,

sets except for that at frequency 800 Hz. In the third picture,
the measured data sct gives a little better performance. In the
last figure, however, the simulated one presents better results
at the frequencies of 200 and 400 Hz,

Table 7 summarizes the network performance by the
variation of training data set. On some cases, the network
performs worse on the simulated training data (for example,
800 Hz in case 11 and [ll). However, the network shows
better or comparabie performance on the average for other
cases, promising the applicability of the network trained on
the simulated data. The network, trained on the measured
signals, gives slightly better results than that on the
stnulated, the improvement being 1.40 % and 0.64 % on the

average for the class A and B signals, respectively.

Table 7. Network performance(%) by the variation of training data set.
The classifying threshodd is 0.8.

Source Center Training Data Set
case | Receiver Depth Freq. simulated | Measured
{m) (Hz) (alf) (alf)
200 100/100 [$.031¢1]
40 100100 100100
: BMR 30 600 1007100 1004100
800 100/97.9 100/97.9
200 1007100 100/100
400 100100 )Y 100
3

I DRRI 0 600 1007100 | 1007100
800 649/933 | 85.1/955
200 1O0/100 1007100
w | prr2 10 400 100/100 | 100100
600 1007100 100100
800 65.7/90.3 | 84.3/96.3
200 100/99.3 | 93.8/9%3
40N 100/100 93.27100

v
I BMR 10 600 1007100 1¥ 100
800 100/100 | 1006100
Avg, 95.7/48.8 | 97.1/99.4

{a/f3y:class A fctass B

Variation of Center Frequency

It has been known that there exist the optimum frequencies
at which wave transmission is best [22]. Optimum frequency
is a general feature of ducted propagation in the occan. [t

occurs as a result of competing propagation and attenuation
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mechanisms at high and low frequencies. In the high-
frequency regime there exist increasing volume and
scattering loss with increasing frequency. At lower
frequencies the situation ts complicated. With increasing
wavelength the efficiency of the duct to confine sound
decreases (the cut-off phenomenon). Hence, propagation and
attenuation mechanisms outside the duct (in the sea bottom)
become important. In this study. the analyses are not tricd
any more on the propagation loss or the optimum frequency
because they somewhat deviate from the topic. An analysis
is attempted on the network performance in relation 1o only
the SNRs of the four center frequencies.

Table 8 summarizes the performance by the variation of
center frequency. The overall performance reaches over 90
% in al] cases except for the case of frequency 800 Hz and
class A where it is 87.2 %. Among the four cenler
frequencies, the signals centered on 600 Hz are classitied
perfectly. When the network is trained on the measured data,
the signal of frequency 600 Hz is chosen for the training.
Thus, the network performance on the measured data of 600
Hz is in fact the venfication results on the training dala sets
themselves. This perfect outputs may be also anticipated
from the monitored signals [16,20] where the SNR is the
highest on 60 Hz. The sound sourcc was operated to have
source levels of maximum 168 dB on 200 Hz and mintmum
150 dB on 800 Hz [24], but the SNR is the highest on 600
Hz.

Table 8. Network performance(%) by the variation of ¢cnter frequency.
The classifying threshoid is (0.8.

case Training 200 H: :oet: ll:r qunsltl)zn:{y 800 H Ave
™| Data Set z 2 z v f

A @) | @y | @ | s | 9B
100100 | 100100 { 1002100 | 106v97.9 | 1OXH99.5
1007100 | 1007100 | 1001100 | 64.9/93.3 | 91.2208.3

I ySimalated! 140100 | 100100 | 1001100 | 6577003 [ 91,4076
100/59.3 1 83 8/99 3| L0G/100 | 1007100 | 10/99.8
1OOZ100 | 1004100 | 1007100 | 97.37100 | 99.3/100
0 |Measured 1007100 | 1004100 | 100100 | 85.1/95.5 | 96.3/98.9

1007100 | 100/100 | 1007100 | B4.3/96.3 | 96.1/98.9
91.8/99.31 93.2/100 | 100/100 | 100100 | 96.8/99.8

Avp. 99.2/99.8] 99.2/100 | L00/10C | 87.2/96.7 | 96.4/99.1
{aB).class Alclass B

VI. Conclusions

This study attempts to test the classifying performance of a
neural network and thereby examine its applicability to the
signals distorted in a shallow water environment. Linear
frequency modulated (LFM) signals are simulated by using
an acoustic model and also measured through sea
experiment.

After trained on the simulated signals over water depth, the

‘The Journal of the Acoustical Society of Korea, Vol. 17. No. 1E(1998)

nctwork gives over 95 % performance with the SNR being
up to -10 dB. Among the transforms, the PWVD presents the
best performance particularly in a highly noisy condition.
The network performs worse with the summcr sound speed
profile than with the winter profile. It is also expected to
present much different performance with the variation of
bottom properties.

When the network is trained on the simulated signals, it
classifies over 90 % of the measured signals. On the
contrary, when the network is traincd on the measured
signals which have the highest SNR, it gives a little better
results than that trained on the simulated data.

[n conclusion. the simulated signals are successfully
applied to training a neural network, and the trained network
performs weclil in classifying the signals distorted by a

surrounding envirenment and corrupted by noise.
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