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Dynamic Responses in Orthotropic Media Due to Pulsating Line Source

*Yong-Yun Kim

Abstract

The analysis of dynamic responses arc carried out on several anisotropic systems due (o butied pulsating line sources.

These include infinite, semi-infinite spaces. The media possess orthotropic or higher symmetry. The load is in ¢the form of

a nonmal stress acting with parallel to symmetry axis on the pfane of symmetry within the matenials, The results are first

derived for infinite media. Subsequently the results for semi-infinite are derived by using superposition of the solution in

the infinite medium together with a scattered solution from the boundaries. The swn of both solutions has to satisfy stress

free boundary conditions, thereby leading to the complete solutions. The solutions are simplified to the systems possessing

of higher symmetry, such as orthotropic, transversely isotropic, cubic, and isoropic symmetry.

I. Introduction

Acoustic vibrations in solid structures esscntially involve
the propagation of wave motion throughout the: support-
ing media. In dealing with acoustic vibrations of systems
involving coupling of compressible fluids with platc and
shell structures, it is important to possess an appreciation
of the “wave view™ of vibration. Understanding the rc-
sponse of elastic solids to internal mechanical sources,
then, has long becn of interest to rescarchers in classical
fields such as acoustics, vibration, seismology, as well as
modern fields of application like ultrasonics and acoustic
emission.

Plane harmonic wave interaction with homogencous
elastic anisotropic media, in general, and with layered
anisotropic media, in particular, have been extensively
investigated in the past decade or so. This advancement
has been prompted at least from a mechanics point of
view, by the increased usc of advanced composite mater-
ials in many structural applications. A quick review of
available literature on this subject reveals that most of
the work done so far is carried out on isotropic media,
The effect of imposed line load in homogeneous iso-
tropic media has been discussed by several investigators
ever since Lord Rayleigh discovered the existence of
surfacc waves on the surfaces of solids [11). An account
of the literaturc decaling with this problem through 1957
can he found in Ewing, Jardetzky and Press [7]. Most of
the earlicr work [7-9] followed Lamb [10]), who appar-
ently was the first to consider the motion of half space
caused by a vertically applied line load on the free

surface or within the medium. He was able to show that
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displacements at large distance consists of a series of
events which comesponds to the amival of longiwdinal,
shear, and Rayleigh sorface wave.

In this paper, the formal developments in previous
works are rigorously followed [1-4) and study the re-
sponse of several anisotropic systems (0 bunied pulsating
line loads. These include infimite und semi-infinite, sys-
tems, The problem is mathemadically formulated based on
the equations of motion in the constitutive relations. The
internal linc load will he in the form of a nomal stress
load, acting at a symmetry dircction withirn the materials
in the planc of symmetry. The load is first described as
a body force in the equations of the motion for the
infinite media and then it is mathematically characterized
as “artificial interface conditions”™ for cach semi-infinite
spaces. A building block approach is utilized in which
the analysis is begun by deriving the results for an in-
finitc media. Subsequently the resulis for semi-infinite
spaccs arc drived by using superposition of the infinitc
medium soiution together with a scattered solution from
the free surface. The sum of both solutions has to satisfy
the stress free boundary conditions, thereby leading to a
complete sofution. The pfane harmonic wave is studied in
anisotropic media possessing so low as orthotropic syin-
metry. The solutions then reduce to the case with isotr-
opic symmetry, which agrees with the classical solutions
of the potential equations by the scparation of variables
technique {5].

II. Problem Formulation

Consider an infinite anisotropic elastic medium posses-
sing orthotropic symmetry. The medium is oriented with
respeet  to  the reference cartesian  coordinate  system

x, = (x), x3, x3) such that the x is assumed normal io
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its plane of symmetry as shown in Figure L. The plane
of symmetry defining the orthomropic symmetry is thus
coincident with the x;,—x, plane. With respect to this
coordinate systemn, the equations of motion in the te-
dium are given by [1]

da, _ 3tu,
ax; +/5i=p Py 21

and, from the general constitutive relations for anisotropic
media,
k1 =123 (2.2)

Oy = Cit €an

by the specialized expanded matrix form to orthotropic
media

on ep ez e 00 Oyjen
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onl_{cn e cw 0 0 0 f]ey 2.3)
o9 0 0 0 Ty 1} 0 Y
[3F) 0 0 0 0 ¢ O i3
o1z 0 0 0 0 0 cwilre

Xy
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X3

Figure 1. An applicd linc load in Orthotropic [nfinte Media.

Where we used the standard contracted subscript notat-
ions 1—11, 2--22, 3—33, 4—23,5—13 and 6-+12,
10 replace fourth order temser cuy (7,7, k {:=1,2.3)
with ¢, (p,¢=1,2,....6). Thus, ¢, stands for cu3.
for example. Here oy, ¢, and #, are the components
of stress, strain and displacement, respectively, and p is
the material density. In equation (2.3}, r,=2e,(i*))
defines the engineering shear strain components.

In what follows, one studies of the infinite medium to
a uniform harmonic line load that is applied along a dir-

ection on the symmetry axis of the matenial system. One

would like 1o solve the case of orthotropic symmetry by
applying constitutive equation (2.3} to the secular equat-
ions (2.1) that is written in the expanded form in terms
of displacement components

2 2 9%u o%u
[CH'%%'*'C&._;E]“H'(C‘B‘*'C‘ME?# Gtzl—f] (2.32)
2 2 2,

_afi'; [(Cu*'c‘sm"gi‘l“]uﬂ'[css%;'f CnaLx:_{]ﬂ:s = p a;" —f3

(2.3b)
Lo + cy—2r ] Iy, 2.3¢)

-5 —7) = -/ .
B ox T Mo T P TR

wherc f, is defined as /= f,=0. fy= Qd(x)) 80y — x§) o™
Equation(2.3c) represents a horizontal shear wave equat-
ion that is independent of a vertical shear wave and a
longitudinal wave. Since the line load has only vertical
componem, equations(2.3a,b) nced to be considered.

IT1. Solutions in the Infinite Media

The steps leading to formal solutions of equations
(2.3a,b) for cach of the two scmi-infinite spaces (See
Figure 1} will be outlined. Since the body force has been
replaced by an “antificial interface condition™, f, deleted
from Equations (2.3a,b). Next, assume harmonic solutions
followed by applying the Fourter transform to these equ-

ations in accordance with

o
—~ — —£
u,=u, ™, i, = f . Yo € 0 dx (3.1}

The general solution of the resulting differential equat-
tons is then sought in the form

l},‘ = L!,'Q —0.\'_1!

1=1,2,3 (3.2)

leading to (he characteristic equation

(ﬁfl ﬁii)(ﬁi)=0 33)

where the various cniries /1, are given by

A” = C5§a’z'-c||+pw2
Ayg=—jéalciy+ cos) 3.4
Ay = cpa’ — cé’ + 00’

Note from equation (3.3) that the A, matrx is sym-
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metric. For the existence of nontrivial solutions m U,
the determinant in equation (3.3), must vanish, there by
leading to an algebraic equation which relates @ 0 w.
This is obviously an altcmative presentation of Christ-
offel's equation [1). The difference is that & is being
found in terms of @ as compared with solving for the
phase velocity for a given propagation direction. Upon
setting the determinant equal to zero, one obtains a fourth
order equation in a which is written symbolically as

A+ Axd*+ Ay=0 (3.5)
with its coefficients given by

A| = C13Cx5
A2=[ (C]3+ Cﬁ:.)z’_ Cncy — C_Ea]éz-‘(cm,+ ng)pwz (36)

A3= C|1C35$‘ +(C“ + Css)pez + PZG)A

Equation (3.5) admits four solutions for «. These a's
have the further properties that

Qg = == a), 4= —ay 37

Furthermore for each @, equation (3.3) yields the
displacement amplitudc ratio,

- _ _ Jafegtos) 318
We = Usel Use = = 0T s @4 o 33)

Finally, using superposition, the formal solutions can
be written for the displacements of equations (2.3a,b) and
their associated stress components using equation (3.2) as

(G, @)= 2, (LW Uye "> 3.92)
(o, o) = ui_:l (Dyy Do) Uyge ~ 507 (3.9b)
where

Dy, = jEcyy— epa, W, (3.10a)
Dy, = el W, —e,), ¢=1,2,3,4 (3.10b)

The above solutions with their various propertics can
now be specialized to both antificial semi-infinite spaccs
by the following steps. Inspection of the above solutions
indicate that each consists of two pairs of wave compo-
nents, each pair propagating in mirror image fashion with
respect to the interface, namely along positive and negat-

ive x, directions. Since propagation is expected to em-
anate from the interface into both media, one atbitrary re-
serves @, and a; for the lower half-space;the remaining
one’s, namely described with &, and @, for the upper
one. The formal solutions are listed in lower and upper

half-spaces according to

(), uy)= (1, W)y, e_"“'_‘k}
R ,azxd (3.1la)

— aixy - #™)
( Gz, 0'|3) = QE.J (Dw, Dza.)()we

(m), uy) = (. W)Ue ™
v "E" . , isxd G

( 6;7' as)ﬂ 42.4 (D;m qu)‘jlae ECACTIEE )

At this point, a formal solution of the field equation
in orthotropic media has been presented. The amplitudes
U, are the unknowns. The amplitudes [/}, will be dete-

rmined by implementing the artificial interface conditions

y S 1 QX xe™, for xy=1x§ at xz=x}
2 G.12)
Cxy du 1 Q(x)e™, for x3= x5 at xy2xf
a.‘ta 2

To this end, if (3.11a,b) is subjected to the conditions
(3.12), onc finally solves the displacement amplitudes as

T 4 = U, =
Un=~Up= (ZenDu) * Uy =—Uyp (Zen Do)
G.13)
where
D,,o=alWi—a3u'5 (314)

It is interesting to note that [D,, = 0 defines an equ-

ivalent Christoffel characteristic equation for the propagat-
ion of bulk waves in the medium. With these' solutions
for the wave amplitudes, solutions for infinite space can

be written in terms of ¢g=1, 3

zanmEI - Q[e—ﬂllxa—xil_e—aalx_a—ﬁl] 3.15)
ZCQJ}D,_.,-,;;} - Q[ u/le salx-xl W3€ —aglxn—xnI]

In summary, solutions (3.15) define the propagauon

fields in the infinitc spaces.

1V. Solution in Semi-infinite Spaces
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Figure 2. Semi-infinite Media.

The solwtions will now be specialized to the infinite
media (3.11a,b) to solve for the case where the free
boundary intercepts the propagating pulse at some arbitr-
ary location pamalle] to the planc x3=0. It is assumed
that the frec boundary is located at x;=-a as depicted
in Figure 2, This implies that the free boundary is loc-
ated in the upper region and thus can only interfere with
the propagation fields in the negative x, directon. For
this case, the solution (3.15) will constitute an incident
wave on a free surface. As a result, waves will reflect
from the free boundary and propagate in the positive x,
direction. Thus, appropriate formal solutions for the re-
flected waves can be adapted from the solution (3.11a,b)

in accordance with (Note now that x4 does nol appear

because solutions are referred to the origin x5 = 0)

(e, 23) = 52.3 (1, %) U]f,,e_""‘n (4.12)
(0, afy) = 2, (D D) Uige ™ (4.1b)

With this, the total solution for the semi-infinite space
(designated with superscript ‘s”) which is requited to
satisfy the stress free boundary condition is obtained by
superposing the incident waves and reflected waves in
accordance with

(W)= T (LWoUe "™+ T (~1LWUTe

{4.2a)
(G, o) = 2 (Dig, Dy)Ujpe ™™ @)
+ 2 (D DU e
The boundary condition is given by
Gh=0u=0 a x=—d @.3)

By imposing the boundary conditions (4.5) on equation
{4.4), a linear system is obtained, which is expressible as

(5 B)(2) (2
where

R= (UDLE+ URDRED
(4.5)
Ry=— UV DyE]+ Uy DyE?)

Using the standard Cramer’s rule, the solutions for the
reflected amplitudes are

Uy = (R Dy~ RyDW{( Do Ey) @6
Up={(RyDy— RDy)/ (Do E;)

with
E,=e", Ej=e™' g=1.3 @7
and
D, = D\Dy— Dy Dy 4.8)

The simplified solutions are obtained by combining (4.7)
with (4.8) as

D_m( e’ ala -3l - = ale, - 23| )
+a (4923)

%= b e

+((Dy Dy + DuDy)E{~ 2DyDnEDe” "
+{(Dy Dy + DyDp) E5~ 2D, Dy EDe 4% M)

uy = ﬂﬁc_&;bQJ): (Do(We aalaz=xfl _ We ™ alxs= eily

+((Dy Dy + Dy D) EY — 2D D Whe ™™
+((Dy Dy + DyD\)E;— 2D Dy ENWie ™ nintay

(4.9b)

(n+d

with  sign = (xy— x5)/ x5 — x£|

V. Reduction of Results to Isotropic Media

Solutions for the isotropic symmetry can be obtained
from the orthotropic symmetry by exploiting the degener-
acy's of the elastic properties ¢,,,. Replacing ¢ by
A+2p, cg by p, setting cq=c, and ¢y=c¢;—2c5=2A
results in an isotropic medium. Although these simplific-
ations are adequate to reduce all of the previous resulis
to ones pertaining to isotropic media, nevertheless they
lead © wmuch simpler expressions for the various pro-
pagation parameters that are given by equations (3.7, 3.8,
3.10a,b) [6). The characteristic equation (3.5) reduces to



74 The Journal of the Acoustical Society of Korea. Vol. 17. No. 1E (1998)

[&*— (7= D[P - (2= &%) =0 5.1

Specially, implementing the isofropic restrictions re-
duces these parameters to the following.

&=V pa*1(A+21). &=V po’/(A+21)
01=V52_52.. 0’3=V52'“527

@) =ia./$. w3=}'E;“a;; {5.2)
Dy = ju(26° — ED/E, Dy3=256n

Dy =2a,, Dp={(28 - )/ ay

By substituting (5.2) into (3.15), the solutions for or-
thotropic infinite media ate reduced to the solutions for
those of isowopic media [5]

~ _ _sign jQ¢ —ala =zl —agte- ol
@ i Lo ] (5.3)
— —ailx.—xnl 2 —alx - X0
e = [— a,aqe Y+ Ee |
3T 2uthay '
with the aid of
p,=-15- (5.4)

ml

The response to the internal line load in the semi-
infinite space with orthotropic symmetry reduces to the
solution for a media with isotropic symmetry. Equations
(4.11, 4.12) then become

ale xl adx, )
—e )

= szTE[ sign jED (e

—onilxy+d) —aix, ta)
+ S "I S T

o =¢ _ Cala Xl 9 =als, sl
Uys 2;!{527(!31)5 [ D;( &y a;e + E’e )
- Siaze P~ Sgte N
(5.5)

where

Sy= DE;— dmas(288 - EDE;
with

D= (26— £5)* ~ 46 a4 67

E = (262_ S:;)e + 452(1|ﬂ’3
V1. Conclusion

The analysis of dynamic responses duc 10 pulsating line

load are carricd out on orthotropic system which include
infinitc, semi-infinite spaces. These analytical solutions
arc adquatc for the material system possessing orthotropic
or higher symmetry, transversely isotropic, cubic, and
isotropic  contained implicitly in the analysis. The solut-
ions of the system with orthotropic symmetry have sim-
plified to thase of isotropic systems by exploiting elastic

properties of A and u.

References

1. Y. Y Kim, “Elasiic waves in Anisotropic Mecdia," Ph.D.

Disscrtatton, University of Cincinnati, 1993.

o

. D. E. Chimenti and A. H. Naytch, “Ulrasonic eflection
and guided waves i fluid-coupled composite laninaies,” J.
Nondestruciive evaluation, Yol.9, No.2/3, 1990.

3. A. H. Nayfech and D. E. Chimenti, “Propagation of guided
waves in fluid-coupled composite platecs of Fiber-Reinforced
composiics,” J. Appl. Mech., Vol.83, 1736, 1988,

4. D. E. Chimenti and A. H. Nayfch, “Ultrasonic leaky waves
in a solid plaic scparaling fluid and vacunm media,” .\
Acous. Soc. Am., Vol.85, 2, 1989.

5. ). P. Achenbach, Wave propagations in elastic solids, Am-
crican Elsevier Pub. Co., Ncw York, 1973,

6. Y. C. Fung, Foundation of solid mechanics, Preatice-Hall,
Englcwood Cliffs, N. J. 1965,

7. W. Ewing, W, Jardcizky and F. Press, Elastic media, McGraw
Hill. New York, 1957.

8. G. Eason, ). Yulton and I. N. Sncddon, “The generation of
wave in an infinitc clastic sobid by wvariable body forces,”
Phil. Trans. Rov. Soc., London, Ser. A. Vol248, 575-308,
1956.

9. E. R. Lapwoad, “The disturbance duc 10 a linc source n a
semi-infinite  clastic medium,” Pl Frans. Rov. Soc., Lon-
don, Ser. A, Vob. 242, 9-100, 1949

10. H. Lamb, “On waves in an elastic plate,” Phil. Trans. Roy.
Soc., London, Ser. A, Vol. 93, 124-128, 1917.

I1. Lord Raylcigh, "On the free vibrations of an infinile plaic

of homogencous isotropic clastic material,” Proc. London

Mathematical society, Vol 20, 225, 1989



Dynamic Responses in Orthotropic Media Due to Pulsaling Line Source

AYong Yun Kim

Yong Yun Kim received the B.S.
degree in  mechanical enginecring
from Yonsei University, Seoul, Korea
in 1982 and the M.S. degree in
mechanical engineering from Univers-
ity of Toledo, Ohio, US.A. in 1985
He received the Ph.D. degree in

1993 and worked as a post doctoral researcher for about
one year in aerospace engineering and engineering me-
chanics from University of Cincinnati, Ohio, US.A.
Since 1994, he has been with Samsung Aecrospace Indu-
strics, Kyhung, Korea, where he has been developing
several types of interconnecters for semiconductor package.
His researchinterests are mathematical and experimental
modeling of field problems with regard to ptastic de-
formation of thin plate, elastic wave propagation, and
vibration and noise.

75



