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Abstract

Since the introduction of hands-free phone set and ieleconferencing system, acoustic echo cancellation has been a

challenge for cnginecrs. Recently many researches have shown that the best solution for the acoustic echo compensation

problem is represented by an adaptive filter which iceratively trics o identify the unknown impulse response of the system

from loudspeaker to microphone. In this paper, we apply the delayless subband adaptive filters and fast affine projection

algorithm for the identification of room impulse response. Simulation results show 3~8 dB more enhanced performance

than conventional futlband adaptive filters or subband adaptive filters. In addition, fast affine projection algorithm shows

betser convergence speed at the expense of the low computational complexity dian conventional LMS algorithm.

1. Introduction

Echo is the phenomencn in which a delayed and di-
storted version of an original sourcc or signal is reflected
back to the source. It's generated in long-distance tele-
communication system or digital mobile phone system be-
cause of transmission distance and speech data processing.
And the acoustic coupling between loudspeaker and micr-
ophone is a severe problem for modem audic terminal
such as teleconferencing system and hands-free phone sct.
Acoustic echo path is a time varying system. so adaptive
fillering is the indispensable condition for the natural
communication[1){2). Unfortunately, such signal processing
applications involve adaptive filters with hundreds of taps
because of the long reverberation time. The computation-
al burden associated with these long adaptive filters pre-
cludes their use for many low-cost applications. ir addition,
adaptive filters with may taps may also suffer from slow
convergence, especially if the input signal spectrum has a
large dynamic range, illconditioned. To overcome this
problem, adaptive filtering in subband is a new technique
for the real-time identification of large impulse responsc
like the oncs encountered in applications of acoustic echo
cancellation{ AEC) and affinc projection(AFP) algorithm is
new algorithm for the fast convergence speed. But con-
ventional subband adaptive filtering is ruled out for such
AEC because dclay is introduced into the signal proces-
sing path and AFP algorithm introduces other difficulty
such as an increasement in computational load in hard-
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This paper presents delayless subband adaptive filters
which is proposcd by Morgan and fast affine projection
(FAP) algorithm, so we apply the AEC problems. FAP's
important features include LMS like computational com-
plexity and RLS like convergence speed where the ad-
aptive filter input signal is ill<conditioned signal or speech
signal[8]. So above facts make good solution for the ap-
plication such as AEC problems.

. Basic principles of AEC

The acoustic echo appears when one or both ends in
a communication use audio terminals with acoustic feed-
back from the loudspeaker to the microphone, like tele-

conferencing systems which is presenied in figure 1.
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Figure 1. Tcleconferencing system.

The specch signal from the sending room is sent into
the receiving room by a loudspeaker, the speech is pi-
cked up by a microphone and sent to the remote user.
Because of the acoustic echo path from the loudspeaker
to the microphone, including the reflections on wall and
people inside the room, some sent speech in sending speech



is fed back to the remotc uwser in sending room. This
phenomenon may arise the howling and it cut natural
communication. AEC is indispensable problem for the na-

toral communicalion.
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Figure 2. Basic principle of an acoustic ccho canceller.

Figure 2 shows the basic principle of AEC. Basically,
an AEC is an adaptive filtcr {vd by the incoming speech
signal, AEC modelizes the acoustic echo path and yields
al s output a echo replica signal which is subtracted from

real acoustic echo signal.

. Delayless Subband Adaptive Filters

The disadvantages of conventional subband adaptive
filters techmiques are that delay is produced into the
signal path by duc to the filier bank uvsed to devide the
signal tn each frequency band{4][5). And nonideal filier
bank characteristics introduce the aliasing problems which
degrade the quality of signal. But delayless subband ad-
aptive filiers which is proposed by Mosgan are new (ype
of subband adaptive filter architccture. Figure 3 shows
the delayless subband adaptive filters architecture. This
new subband adaptive fitter architceture in which the ad-
aptive weights are computed in subband, but collectivety
transformed  into an  equivalent set of wideband filier
weights. In this manuers, signal processing path  delay
and increasement of aliasing effect are avoided while re-
taining the computational and convergence speed advant-
ages of classical subband processing.

We divide input signal and desired signal in cach
band and npdate the adaptive fikter weights using adapt:
ive algorithrn in each band. This coefficients are values
of the time domain in cach frequency band, so we trans-
form these values into the frequency domain and we use
frequency stacking each operating band. I we have real
value input signal then wideband filter coefficients arc
real valuc. Therefore we stack complex weights in frequ-
ency domain using hall of total subbands and the other
half values are made by complex conjugate. And using
JFFT we transform widcband filter weights into the time

domain. After making wideband filter weights, we deve-
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Figure 3. Declayless subband adaptive filter structure.

lope the convolution. We made the cstimated echo signal
and subwracted ¢ from rcal echo signal and we have
cror signal. In this manner we have operation 1o update
filler weights in cach subband and crror signal is gen-
crated in widcband, time-domain. So we avoid signal
processing delay and diminish the aliasing  effects as
classical subband adaptive filter problems. But we must
have filter bank for generating cach band signal such as
classical subband filtering. One way to implement the
delayless  subband  adaptive filter is to employ the
polyphase FFT techuwigque. This method hold in common
output of prototype low pass filter in ecach band[5][9).
Polyphase implementation method 3s  that signal pass
through the  prototype low pass filter and we have
divided signal in cach band using DFT filter hank. That
implementation lessen only one low pass filtering com-
parative  with classical subband adaptive filtering which
us¢ the band pass filtenng. And we can caleulate céfect-
ively when using FFT. Figure 4 shows (he process of

decimation after dividing in each band.
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Figure 4. Signal decomposition and decimadon

Now, we see real implementation of polyphase FFT

filter bank. In figwe 4, x,(»n) is represented as follows:
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From eq. (1), let »=7K+p, p=0,1,---,K~1 and
using K = 2M, we find as follows:

xlm) = Wx™ g [i KK+ p) -

2)
({m—2nM— )} Wi
In eq. (2) we replace another variables as follows:
P.(m) = WmK+ p) 3)
x,{m) = ¥ mM~ p) #

And we can wrte as follows:

xdm) = W, :Z_: [ﬂ}:w E(r)x,,(m—'ér)]ﬂ’fé’ (5)
From ¢q. (5), let other variables:

v (my = ﬁ: P x(m—29 (6

and we can scc as follows:
xi{m) = DET Ly, (m) W ™ = DFT [y, s il 2}] (7

Above the eq. DFT* is represented by DFT kernal

l!Siﬂg Wh =g 2K

replaced by general DFT  kemal
W,= e ¥ So we can find the other expression of

eq. {1} as follows eq. (8).

DFT [y, (m)], for k=0,2,4, -
x(m) = ‘)
DFT'[y,,;M(m)], for #=1,3,5, -

In eq. (3), P.(m) is sampled data by factor K of
prototype low pass filter #(n), ie. pth band filter co-
efficients decimated by factor M. In eq. (4), x,(m) is
a pth band input signal sampled by M. In eq (6)
yo(m) is the value of convolution between input signal,
x,(m) and filier coefficients, _E( m). From eq. (8), we
can find kth band output x,(m) using DFT* of y (m).
And we can find also cach band input signal which
divided by in each band shifted by A samples when

5]

m==1,3,5, -~ using periodic property of DFT.

Now, we consider a concrete example. Impulse response
of unknown system has 512 samples and we consider a
system identification wuwsing 32-band subband adaptivc

filtering technique.
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Figure 5. Frequency response of polyphase FFT filter band
in M=32.

Figure 5 shows the resulting frequency response of the
17 filters. After decimation by a factor =16, cach suh-
band spans the S12-tap wideband filier using 32 taps per
subband. The subband adaptive weights are teansformed
by 32-point FFT to obtain 32 frequencics per subband,
which are then stacked as showed in figure 6 to form
points (0~255 of a 3512-point array, frequency sampling
method.
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Figure 6. Frequency stacking for 32-subband polyphase FFT.
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The amray is then completex] by setting point 256 equal
to zero and using complex conjugatcs of points 1~255 in
reverse order. Finally, the 512-point armay is transformed

by a 512-point IFFT to obtain the wideband filter weights.

iv. Fast Affine Projection Algorithm

In many adaplive filtering algorithms, the LMS algor-

ithm is gencrally vsed in practice because of s sim-

plicity and rtobustness. The computational complexity of

the LMS algoridhm is low, however, convergence speed
is very slow and tracking perfonnmance is poor for a
colored input signal. On (he other hand, the RLS algor-
ithm has the fast convergence speed, but its large com-
putational complexity is a drawback. In recemt years, an
algorithm  called  affine  projection(AFPY  algorithun  has
been studied. This algorithm has propertics that lic bete
ween those of the LMS and RLS algorithm, less com-
plexity than RLS algorithm, but much faster convergence
than LMS algorithim for an colored input signal such as
spcech which can be modeled as a low-order AR pro-
cess{8).

We consider priori crror vector and  posteriori error

veotor as follows:

E(n) = D(n) — X" () win—1) 9
E(n) = D(ny — XT(m) wl ) (10)
where

Do) = [dn), dn—1), -, dun—p+ 1)

Xm = [ xp (). % (e, x{n- pr 1] AN
()= ). dln—1D, . x{n-L+D]7

and p and L arc represented the projection order and
adaptive ftlier length,

I we substitute {xn) in (9 into (10) and let poster-

o error vector (o zero vector, then we have

E(n) = XT(n) [ w(n) — w(n—1)) (12)
where E(a)= [ey(n), -, e, ()7, Lx] weight ve-
ctor undee condition that p¢ [ is the solution of under-

determined lincar cquation of Eucleadian minimum vector

norm as follows:

dw(n) = X[ X0y X(m)] " E(n) (13
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From (i3), we have weight updawe cquation of AFP

algorithm as follows:

win) = w{n—1) + 2 X{n)K(n) (14

wheee K(n)={ X7y X+ 611 lE(n)=-'— K ') E(»
is a decorselation Nlter.

Updating the filter weights vector requires (p— 1)L
computational complexity for decorrelation, () p"') for cal-
culation of the decorrelation filer, and 2. for Hiler wl-
Justment and convolution.

AFP algorithm still has a computational burden because
of matrix inverse of decorrelation filter. Using the fast
transversal Glter(FTFY method we can solve that problem,
We omit the derailed deviation of the FAP atgorithm but
only list its process in table 1. The reduction of compula-
tional complexity is achicved by the recursive update of

the decomrelation vector K () proposed by reference |8

Table 1. Fasi affine projection algosithm.,

Initialization
M0 - BOY=48
FO=1107) s=10"11
Do (T.1) - (1.9), for »n=1,2 3, -
using. shiding windowed FRLS to update
F(n), B(n). f(n), b{n) (T.1y

roim—r u=D+x(n)x  {m -xn—{)x'{n-L) (T2

A - A x]a) win—1) - wrliin _K'(_n -1 (T}

v'{")
B = _ l (T4
(1 -y E(n-1)
. 0 ) I_ Tiuy k
K(m - [ i ")] E o /00O B (T5)
Kim _1 : T, - N
[ 0 ] - K(ny - Bon () b0 EGD (T.6)

V. Simulation Results

In this section, we describe simulations performed to
shown the beuer performance described in the previous
sections and te compare expertmentally the performance
of the delayless subband adaptive filters and FAP algor-
ithm 10 that of the fullband adaptive filters and classical
ILMS algorishm. These simulations are system  identificat-
ion experiment. In cach case, an adaptive filter is placed
in parallel with the system to be modelled. This exper-

imental setup is shown in figure 7.
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Figure 7. Teleconferecing system with AEC.

For the real simulation, the unknown system was gen-
crally simulated by a truncated impulse response measured
in a real seminar room has about 2m ~ 8m x 8m volume
and microphone wus placed 1.5m from loudspeaker.
White gaussian noise with zero-mean is used for this
measurement as source signal of loudspeaker. After get-
ting data from loudspcaker, we used the DT-2823 which
is a specific-purposc DSP board for the A/} conversion.
In addition this measwrement was achieved at simuli-
aneously. Figure 8 shows a mecasured impulse response

of the room with 512 samples.
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Figure 8. Measured impulse response of room.

The input signal is a colored noise which is obtained
as the ouwput of the ali-pole filter with aansfer function
eq. {15). Obtained colored noise has a cigenvalue spread
ratio with about (0000. And real speech signal also used
for adaptive filter input signal.

_ L | _
AR = T g 0.9 0.0z 105 7 O

To evaluate performance index, we use the MSE curve
for colored signal and ERLE curve for speech signal as
eq. {16).

g d*(n—1i)
g en—1)

ERLE(#z) = 10log (16}

And we use the prototype low pass filter with 64-tap
which is used for filter bank in delayless subband ad-
aptive filter, We experiments this simulation with 512-tap
fultband adaptive filter, 2-band, 4-band, and 8-band delay-
less subband adaptive filter.

FULL LMS
SUB2 LMS
SUB4 LMS
SUB8 LMS

MSE[@B)

0 200 400 600 800 1000

Heration {X10}

Figure 9. Comparative MSE curves of 1.MS algorithm in
cach stracture.

Figurc 9 shows the behavior of the LMS algorithm in
fullband and 2-band, 4-band, 8-band delayless subband
adaptive filtering. Convergence speed can be improved by
increasing the subband number.

0
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Figure 10. Comparative MSE curves of 4th order FAP algor-
ithm in each siructure,

Figure 10 shows the convergence performance of the
FAP algorithm in ftullband and 2-band, 4-band, 8-band
delayless subband adaptive filtering. Figure 9 and  figure
10 show the cffectiveness of the delayless subband str-
ucture. Instead of using fullband with projection order of
»=E8, which has high computational load, we can nsc
8-band delayless subband adaptive filtering with LMS
algorithm and yiclds low computational load.

In figure 11 and figure 12, the ERLE obtained with
fullband and 2-band, 4-band, 8-band delayless subband
adaptive filtcring real speech signal input for LMS and
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Figure 11. Comparative ERLE curves of LMS algorithm in

each structure.
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Figure 12. Comparative ERLE curves of 8ih order FAP
algorithm in each structure.

FAP algorithm. We can see that the performance for de-
layless subband adaptive filter in each band is better than
fullband adaptive filter by 3 dB~8 dB. But we can sce
that almost same performance because of the FAP algor-
ithm in nature which has RLS like convergence speed.
From figure 9 to figure 12, we can see faci that delay-
less subband adaptive filter and FAP algorithm have beder
petformance over fullband adaptive filter and LMS algorithm.
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Figure 13. ERLE curves of LMS$ and 8th order FAP algor-
ithm in fullband adaptive filters
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Figure 14, ERLE curves of EMS and 8th order FAP algor-
ithm in d-band delayless subband adaptive Tiliees

Figurc 13 and figure 14 show that FAP algotithm has
superior performance rather than LMS algorithm. By in-
spection, we can observe that ERLE valucs are increased
more or less by 3~5 JdB on both figures.

For rea) ume implementation of AEC, we can use
LMS algorithm in delayless subbangd adaptive filter which
has merit with computational load. And we see the con-
vergence speed can be improved by increasing the pro-
jection oder or band number in FAP algorithm or delay-
less subband adaptive filter.

vl. Conclusions

s teleconferencing system, having  considerably long
reverberation  fime  and  time  varying  system, there s
problem for real time implememation if we use classical
moethod, We used the delayless subband  adaptive filier
architecture to improve the convergence speed, diminish
the computation lead and use the FAP algorithm for
more convergence speed. And we analyzed the compar-
ative performance of LMS atgorithm and FAP algorithm
with fullband and delayless subband adaptive filcer. Simul-
ation results showed the fact that more band number in
delayicss subband adaptive filter had better performance
and FAP algorithm had better convergence speed than
LMS algorithm. For real time implementation, we used
the delayless subband adaprive filter which was avoided
the signal path  dclay problem in  classical subband
adaptive filiers. And we see the LMS algorithm can be
used for real time processing in delayless subband  ad-
aptive (ilter. Furthermore we can use other method, such
as discrete cosine  transform{DCT), for naking real ad-
aptive weights in delayless subband adaptive filter which
was used by FFT which method reduces computational

complexity.
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