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Elastic Wave Propagation in Monoclinic System Due to Transient Line Load

* Yong-Yun Kim

Abstract

In this paper, we study the response of sever미 anisotropic systems to buried transient line loads. The problem is math­

ematically formulated based on the equations of motion in the constitutive relations. The load is in the form of a normal 

stress acting with arbitrary axis on the plane of monoclinic symmetry. Plane wave equation is coupled with vertical shear 

wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in reference coordinate sys­

tem, where the line load is coincident with symmetry axis of the orthotropic material. Then the equation of motion is 

transformed with respect to general coordinate system with azimuthal angle by using transformation tensor. The load is 

first described as a body force in the equations of the motion for the infinite media and then it is mathematically char­

acterized. Subsequently the results for semi-infinite spaces is also obtained by using superposition of the infinite medium 

solution together with a scattered solution from the free surface. Consequently explicit solutions for the displacements are 

obtained by using Cargniard-DeHoop contour. Numerical results which are drawn from concrete examples of orthotropic

material belonging to monoclinic symmetry are demonstrated.

I. Introduction

Elastic wave interaction with homogeneous elastic an­

isotropic media, in general, and with layered anisotropic 

media, in particular, have been extensively investigated in 

the past decade or so. This advancement has been pro­

mpted at least from a mechanics point of view, by the 

increased use of advanced composite materials in many 

structural applications. The effect of imposed line load in 

homogeneous isotropic media has been discussed by 

several investigators ever since Lord Rayleigh discovered 

the existence of surface waves on the surfaces of solids

[1] . An account of the literature dealing with this problem 

through 1957 can be found in Ewing, Jardetzky and Press

[2] . Most of the earlier work [2-4] followed Larnb [5], 

who apparently was the first to consider the motion of 

half space caused by a vertically applied line load on the 

free surface or within the isotropic medium. He was a미e 

to show that displacements at large distance consist of a 

series of events which corresponds to the arrival of long­

itudinal, shear, and Rayleigh surface waves. For a trans­

ient source loading results can be obtained from those 

corresponding to harmonic ones by a Fourier integral ap­

proach. The resulting double integral could be evaluated 

only by considering large distance. However, a suitable 

deformation of the integral contour by Cargniard-DeHoop 

not only resulted in considerable analytical simplification 

but led to exact, closed algebraic expression for the di­

splacement of time [6].

In this paper, the formal developments in previous 

works are rigorously followed [7-10] and we study the 

response of monoclinic system to buried transient line 

loads. The load is first described 거s a body force in the 

equations of the motion for the infinite media and then 

it is mathematically characterized as ^artificial interface 

conditions'' for each semi-infinite spaces. A building block 

approach is utilized in which the analysis has begun by 

deriving the results for an infinite media. Subsequently 

the results for semi-infinite spaces, by using superposition 

of the infinite medium solution together with a scattered 

solution from the free surface. The sum of both solutions 

has to satisfy the stress free boundary conditions, thereby 

leading to a complete solution. Consequently explicit sol­

utions for the displacements are obtained by using Carg­

niard-DeHoop contour. Numerical results which are drawn 

from concrete examples of orthotropic material, InAs, 

belonging to monoclinic symmetry are demonstrated.

II. Problem Formulation

Consider an infinite anisotropic elastic medium posses­

sing orthotropic symmetry. The medium is oriented with 

respect to the reference cartesian coordinate system x/ =： 

(%]',%2 ,尤3)such that the x3' is assumed normal to its 

plane of symmetry as shown in Fig. 1. The plane of sym­

metry defining the orthotropic symmetry is thus coincid­

ent with the *]' —*2  plane. With respect to this coordi­

nate system, the equations of motion in the medium are 
given by
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8 如 丄 f, ， 처的'

K 一語 (2.1)

and, from the general constitutive relations for anisotropic 

media,

矣=c砌'i, j, k, /= 1,2,3 (2.2)

by the specialized expanded matrix form to orthotropic 

media

tensor, then for any orthogonal transformation of the pri­

med to (he non-primed coordinates, i.e., it transfonns ac­

cording to

(、ijki — B tm B 泓 B koB ip (2.4)

where &丿 is the cosine of the angle between 的 and x/, 

respectively. For a rotation of angle $ in the xf — 

plane, the transformation tensor 乱丿 reduces to

8〃 = (2.5)
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Figure 1. Line load in orthotropic infinite media.
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If the transformation is applied to Eq.(2.3), one gets
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Where we used the standard contracted subsenpt notations

1 — 11, 2—22, 3—33, 4-23, 5—13 and 6-12, to re­

place fourth order tenser cilM 1,2,3) with c的

(Z),4= 1,2, , 6). Thus, c45 stands for 总心，for ex­

ample. Here e,y and u； are the components of stress, 

strain and displacement, respectively, and p is the mater­

ial density. In equation (2.3), 九= 2e〃(z学丿)defines the 

engineering shear strain components.

In what follows, we study of the infinite medium to a 

transient line load that is applied along a direction that 

makes an arbitrary a기m니thal angle 0 with the x/ axis. 

Since the response of the medium to such a wave is 

independent of the applied line direction, we conduct our 

analysis in a transformed coordinate system formed 

by a rotation of the plane x/ — through the angle 0 

about the x；/ axis. Thus, the direction will coincide 

with the line load direction. Since cl;kl is a fourth order

The orthotropic system is transformed to monoclinic with 

nonzero constants of c)6, c^, c,%, and c.^- And the 

secular equation (2.1) is written in the expanded form in 

terms of displacement components by applying the tensor 

transformation, Eq.(2.4)-Eq,(2.6)

萨 泸 ^2 字
[]的 + [ c^~^2 + c^~~2]u2

oX[ dx3 dxi dx3 (27Q

+嘿"3+鬲器 =。믘"'

2 ^2 ^2
云万+ 竺刃％ + [。66亏芝+ C1W项 &

8尤1 殺3 ^x\ 8*3  (2 7b)
丄 a / I 、初3 a ° “2 ,
+ ■茹(어5 + %)舌 =衫 - 也

1"")翌F 부"+ S)欝 Sc)

H 아毒 芸3爲]“3 = 2滂 F

where /, is defined as 丿"=为=0,方=@度由)3(的一,祁)F(£) 

for the line load and Q is component.

III. Solutions by Fourier transform

Formal solutions are effectuated by applying the Four­

ier transform to these Eqs.(2.7a-c) in accordance with
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Ui = I dt、 u, — I ute 3 dxi (3.1)J 0 J — co

The general solution of the resulting differential equations 

is then sought in the form

Ui — Ute "的，i = 1,2,3 (3・2)

The steps leading to formal solutions of Eqs. (2 7a-c) for 

each of the two semi-infinite spaces (See Fig.l)will be 

outlined [7]. Body force, ft, first, d이eted from Eqs. 

(2.7a-c), since the body force has been replaced by an 

'"artificial interface condition1', which is given by

QdS])F(f), for gQ/ at 光3 = x；

QS(約)F(£), for 松 그：咨 at x3 = x? (3 3)

Infinite Media
The Eqs.(2.7a-c) lead to the characteristic equation in 

terms of Ui by substituting Eq.(3.1) and Eq,(3.2). The 

characteristic equation yields nontrivial solutions in U” 

thereby resulting in the sixth order algebraic equation in 

a, whose o's have the further properties,

a2 = ~a1,皿=一。3, a& = -a5 (34)

Furthermore for each a, Eq.(3.3) yields the displacement 

amplitude ratio,

【//=卩L十1 =匕知/ £匕=1[/1]1刀23 — …刀22，爲3】

化=一 W^+1= 1知/"1° = 1[/11小#23~刀】3』22]/[/123/123~ 刀22433]

(3.5)

where the is given in Appendix. Finally, using super­

position, the formal solutions can be written for the 

displacements of Eqs.(2.7a-c) and their associated stress 

components using Eq.(3.2) as

(z/i, «2> w3)= ^(1, Vq, W^jU^e 저) (3 6)

(。33,。13,如)=去 £乂”1”"以，£，&7)以*  七)

<7= 1

where is given in Appendix.

The above solutions with their various properties can 

now be specialized to both artificial semi-infinite spaces 

by the following steps. Inspection of the above solutions 

indicate that each consists of three pairs of wave com­

ponents, each pair propagating in mirror image fashion 

with respect to the interface, namely along positive and 

negative %3 directions. Since propagation is expected to 

emanate from the interface into both media, one arbitrary 

reserves iz3 and for the lower half-space; the 

remaining one's, namely described with a2, Q" and 

for the upper one. A formal solution of the field equ­

ation in monoclinic media have been obtained with the 

unknown amplitudes I、. The amplitudes will be 

determined by implementing the artificial interface condit­

ions Eq.(3.3). With these solutions for the wave ampk 

itudes, solutions for infinite space can be written in terms 

of 々=1,3,5

(或'1, u2, w3) = 二¥； 5 (1, WQ )Ui*" 지"F

(。33,。13，。23)=(=0 辱，£)&7)〔，1夕 '히" 时

for x3 느 %3 (3.7a)

(靛1, 亥，曷 = 广圣 5 (-1, - * %)5厂”小 一 재 

((丁33,。13, &23)= 5 从 - 知。3)。呻 쌔"‘ 새

for x3 M X3 (3.7b)

where the displacement amplitudes, U插,are given in

Appendix

SemHnfinite Media

Figure 2. Semi-infinite media.

We now adapt the solutions of the infinite media Eq. 

(3.7a,b) to solve for the case where the free boundaiy 

intercepts the propagating pulse at some arbitrary location 

parallel to the plane —0- It is assumed that the free 

boundary is located at x3 = — d as depicted in Fig. 2. 

This implies that the free boundary is located in the up­

per region and thus can only interfere with the propagat­

ion fields in the negative X3 direction. For this case, the 

solution of Eq.(3.7a,b) will constitute an incident wave 
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on a free surface. As a result, waves will reflect from 

the free boundary and propagate in the positive .r3 dir­

ection. Thus, appropriate formal solutions, superposing the 

incident waves and the reflected waves, can be adapted 

from the solution of Eq.(3.6) in accordance with

(Wi，U2, =( «-2. »：1)+ 况3 5 (L VW兀7。"

(琦，。备，威)=(《加，cm) + g 3 (以q如，％)%"« "

'' 38)

The boundary condition on the free surface (Fig. 2) is 

given by

月3 =疝=。志=0 at 尤3 = — d (3.9)

By imposing the boundary condition on Eq.(3,8), we get 

the standard simultaneous linear equation. The reflected 

wave amplitudes are yielded, which are given in Ap­

pendix.

IV. Cargniard-DeHoop Contour variation

Now I will do the transformations back to the time­

space domain by using Cargniard DeHoop method. The 

method is based on the following elementary property of 

the one-sided Laplace transform. First, consider the Lap­

lace transform of u:. u； is obtained by

必=S f°° %「5* 吳 (4.1)
173,5 J - g

The integration in the complex 7)-plane is carried out 

along the paths where

j 가X、
t= ax-s — ]7)X\ or a — ------------- (4.2)

为3

with t real and positive. Substitution of (3.2) into the 

characteristic equation yields the sixth order polynomial 

defining the Fourier parameter 7);

%3, t, 2?)=客 B”/ = 0 (4.3)

The six root is composed of three parabolas with respect 

to time t for a certain position (xY, x3), and they are 

symmetric about the imaginary 〃 axis. Each of the par­

abolas is associated with four distinct roots of a from 

the characteristic equation, two of which correspond to the 

lower half-space and others to the upper half-space, be­

cause of the boundedness of the wave. Each of the two 

7)represents a separate wavefront.

Infinite Media
Now the inverse Laplace transform can be obtained by 

mere inspection of Eq,(3.7a,b)

r < - V-A), 1、曲; (Vr, - Vz3) ■沥
一厂”［—瓦"顷)侦-------S)W(E)十

Q늣뽀心씋一으능뽀(如 쓰］HIW

［牛스心-쁭 一%里3,)뾎TH (f)

(4.4)

The ", t2 and 电 are the arrival times of the wave 

fronts. In other words, they are the times that correspond 

to the values of the imaginary rf~ axis intercepts of the 

two branches of rj. The notation ?广 denotes the branch 

of 7； to the right side of the imaginary 7)axis and 〃 

denotes the branch of to the left side of the ima­

ginary 7)axis. By using same technique the displacement 

of u? and U3 are obtained similarly to Ui, with multi­

plication of amplitude ratio, Vq, Wq, respectively, i.e (V5

V3)V|/Duni for u2, and (V*  VJW/Dum for U3.

Semi니nfinite Media
By the same procedure, integral transform solutions of 

Eq.(3.8) in the semi-infinite media are invers이y trans­

formed back to the space-time domain. The result of the 

wave propagation is given by

4^:33 . r (1%-『3)(口4(£如0-％房一％女)％”)，-、如 
P s =[ 万k S

(*  —十(％ g一叫a -如

, r ( 峪 - I ( 如 G' —扌— QM규')De) , «.、 腕
*[ ———F◎了~—————(甲-)—江-

(U广 土)(久”,+ 0拍G'T如，、3试 
——一一瓦心一-——一一5。一并_

(峪L、)(/丿旳* (如0 一知国—為

以05

(4-5)

where G；= 耳 GQr, G： — S (頌儿， 
"厂1,3,5 q=]".5

= r= 1,3,5

Gqr is given in Appendix. The remaining displacements

u-> and W3 will be obtained by the same procedures.
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VI. Numerical illustration and Discussion

Numerical illustrations are presented for the analysis. 

An InAs cubic material is chosen and its material con­

stants are given by cj =。須=c：』=83.29x10’° N/m% 

C12'= cJ = 奂3'= 45.26x 1。捕 N/m2, 이「=(由 =(由 = 

39.59 x 1010 N/m2 and p = 5.67 g/cm3. For a i■이ation 

of $ = 30°, these properties transform to =

51.2X1O10 N/m2, C33 - 16.OX1O30 N/m2, c;2 = 36.3 

x IO10 N/m2, c13 = C23 = 4.0x IO10 N/m2, = 0.3x

1010 N/m2, c16 = c?26 = 36.1 x 1010 N/m2, 鶴=顷= 

6.6x 10l° N/m2, <66 = 40.0x 10" N/m2. It confirms 

the earlier conclusion that the transformed matrix takes 

the format of monoclinic symmetry. Fig. 3 presents snap 

shot of absolute value of radical displacement field for 

infinite space corresponding to chosen azimuthal angle 

4)= 30° on X\ — plane at fixed time (t= 0.2psec). A 

spatial grid of 100 x 100 points is generated for the first 

quadrant. The remaining quadrants are then generated by 

the mirror of the first quadrant. The vertical line load is 

located at the origin that is the center of the pictuie. Since 

the medium is homogeneous, the wave field does not 

change as it propagates. The color scheme runs from 

white (minimum) to black (maximum). In this pic ture we 

can clearly recognize the wave curves (three wave fronts 

and lacunae). The picture shows that the contribution of 

the longitudinal wave is strong at 3 = 0° whereas that of 

the shear wave is strong at 9 = 90°.

Figure 3. Snap shot of displacement fi이d at t = 0.2psec of 
InAs infinite system of $ = 30°.

Fig. 4 presents snap shot of absolute value of radical 

displacement fields on x, — xj plane of semi-infinite space 

corresponding to $ = 30° at fixed time (t=0.2psec). In this 

figure, we can clearly recognize the wave curves (surface 

wave and three bulk wave forms). The surface wave peaks 

are shown at inside of the longitudinal wave front and 

near the horizontal plane surface.

Figure 4. Snap shot of displacement field at t = O.2jiscc of 
semi- infinite system

VII. Conclusion

Explicit solutions for the displacements due to trans­

ient line loads, which include infinite, semi-infinite spaces 

for the monoclinic system, are obtained by using Car- 

gniard-DeHoop contour. Numerical results which are drawn 

from concrete examples of orthotropic symmetry are de­

monstrated. Wave equation is coupled with vertical shear 

wave, longitudinal wave and horizontal shear wave. As 

the azimuthal angle approaches to zero, horizontal sheair 

wave components disappear and other wave components 

have numerical results close to those in orthotropic sys­

tem. But wave components can't be numerically calculated 

by using final solutions in monoclinic system since the 

displacement ratio VQ have always zero value in case of 

the orthotropic system which banish all the displacement 

amplitudes. So analytical solutions for orthotropic system 

have to be driven by decoupling horizontal shear wave, 

which will be adquate for the material system possessing 

orthotropic or higher symmetry, transversely isotropic, 

cubic, and isotropic symmetry. The solutions of (he sys­

tem with orthotropic symmetry will be simplified to 

those of isotropic systems by exploiting elastic properties 

of A and 以.also.
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Appendix

Various coefficients are given by

刀11 =。55서一 + q温

/113=一・法心勺3+蝕）

A 22 = cu a2 一 + p（i）2

刀23 = 一活痘（％36+勺5）

刀33 =々/一。55声+ ?护

D、q = 勺3 +。36 虬）~c^aQ WQ

£知=。55（* 服一知）一。45 Ctq K

D細=%5（项曰％—《?）一勺4%1勺，g = 1,2,3,4,5,6

Uh= 一。12 = 帀（峰—卩3）0（2仑』為”，）

勺3= — U14 = 〒S（V】一，5）0（2做@，"）

"15= 一= F（rt（ v3- Vl）Q/（2c33Dl/mp）

，為，，,=叩。：预4一釦吟+卩3（為區一。*）+卩5（。1所—。:阴）

= （RGi - R3G2l + RQMDg e f 

方3 = （RGl3 — 7?3Ga + R.G^KD^ e 興）

槌5 = （&G15 - 7?3G25+7?5G35）/（D5m e
— Z）uGii — D2iG2i + £）3i G3i

Gh = £）2心5 - £）33辱，G2产〃 13035 -”3心5，= DX?ID^-

Gi3 = £）3i£）25一£）21刀35，= ^31 As — ^11^35, ^33 = ^15^21 ~ 1^25 

& = %】）33~一 Z）3饵幻，G%= %£）33 — 0屈）13，心=匕爪如一如，〃21
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