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Elastic Wave Propagation in Monoclinic System Due to Transient Line Load

*Yong-Yur Kim

Abstract

In this paper, we study the response of several amisotropic systems to buried transient line loads. The problem is math-
ematically formulated based on the ecquations of motion in the constitutive relations. The load is in the form of a normal
stress acting with arbitrary axis on the plane of monoclinic symmetry. Plane wave equation is coupled with vertical shear
wave, longitudinal wave and horizontal shear wave, We first considered the equation of motion in reference coordinate sys-
tem, where the line load is coincident with symmetry axis of the orthotropic material. Then the equation of motion is
transformed with respect to general coordinate svstem with azimuthal angle by using cansformation tensor. The Joad is
first described as a body force in the equations of the motion for the infinite media and then it is mathcmatically char-
acterized. Subscquently the results for scmi-infinite spaces is also obtained by using superposition of the infinite medium
solution together with a scattered solution from the free surface. Consequently explicit solutions for the displacements are
obtained by wvsing Cargniard-DeHoop contour. Numerical results which are drawn from concrete examples of orthotropic

material belonging to monoclinic symmetry are demonstrated.

1. Introduction

Elastic wave interaction with homogeneous elastic an-
isotropic mecdia, in general, and with layered anisotropic
media, in particular, have been extensively investigated in
the past decade or so. This advancement has been pro-
mpted at least from a mechanics point of view, by the
increased use of advanced composite materials in many
structural applications. The effect of imposed line load in
homogeneous isofropic media has been discussed by
several investigators ever since Lord Rayleigh discovered
the cxistence of surface waves on the surfaces of solids
[L]1- An account of the literature dealing with this problem
through 1957 can be found in Ewing, Jardetzky and Press
{2]. Most of the earlier work [2-4] followed Lamb [5),
who apparencdly was the first to consider the motion of
half space caused by a vertically applied line Joad on the
free surfacc or within the isotropic medium. He was able
to show that displacements at large distance consist of a
series of events which comresponds to the amival of long-
itudinal, shear, and Rayleigh surface waves. For a trans-
icnt source loading results can be obtained from those
corresponding 1o harmonic ones by 2 Fourier intcgral ap-
proach. The resulting double integral could be evaluated
only by considering large distance. However, a suitable
deformation of the integral contour by Cargniard-DeHoop
not only resulied in considerable analytical simplification
but led 1o exact, closed algebraic expression for the di-
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splacement of time [6].

In this paper, the formal developments in previous
wotks are rigorously followed ([7-10] and we study the
response of monoclinic system to butied transient line
loads. The load is first described as a body force in the
equations of the motion for the infinite media and then
it is mathematically characterized as *“astilicial interface
conditions™ for each semi-infinitc spaces. A building block
approach is utilized in which the analysis has begun by
deriving the rtesults for an infinite media. Subsequently
the results for semi-infinite spaces, by using supetposition
of the infinite medium solution together with a scattered
solution from the free surface. The sum of both solutions
has to satisfy the stress free boundary conditions, thereby
lcading 10 a complete solution. Consequendy cxplicit sol-
utions for the displacemenis arc obtained by using Carg-
niard-DeHoop contour. Numerical results which are drawn
from conctete examples of orthofropic material, InAs,
belonging (0 monoclinic symmetry are. demonstrated.

II. Problem Formulation

Consider an infinite anisotropic elastic medium posses-
sing orthotropic symmetry. The medium is oriented with
respect (o the reference cartesian coordinate system x,” =
(x)", x3", x3") such that the x," is assumed normal 1o its
planc of symmetry as shown in Fig. 1. The plane of sym-
metry defining the orthotropic symmeiry is thus coincid-
ent with the x," —x," plane. With respect to this coordi-
nate system, the equations of motion in the medium are
given by
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and, from the general constitutive relations for anisotropic
media,
ti, e {= 1,23 (2.2
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by the specialized expanded matrix form to orthotropic

media

Figure 1. Linc¢ load in orthofropic infinite media.
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Where we used the standard contracted subscript netations

1—11,2—22,3 +33,4—23,5—13 and 6-+12, to r1c-
place fourth order tenser ¢, (47,4 {=1,2,3) with ¢,
(pg=1,2,,..,6) Thus, ¢y stands for cuyy, lor ex-
ample. Here a,, e, amd «, are the componenis of siress,
strain and displacement, respectively, and p is the mater-
ial density. In cquation {2.3), y;=2e¢,(i¥;) defines the
engincening shear strain components,

In what follows, we study of the infinite medium 10 a
transient line load that is applied along a direction that
makes an arbitrary azimuthal angle ¢ with the x” axis
Since the response of the medium o such a wave is
independent of the applied linc direction, we conduct our
analysis in a transformed coordinate system  x, formed
by a romtion of the plane x,”— x," through the angle ¢

about the x;" axis. Thus, the direction x, will coincide

with the line load direction. Since ¢, is a fourth order
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tensor, then for any orthogonal transformation of the pri-
med 1 the non-primed coordinates, i.c., it transforms ac-

cording to

okt Brmﬂfﬂﬁhlﬁn’ﬂcmnoﬂ’ (24)

where g3, 1s the cosine of the angle between x; and x,,
respeceively. For a rotation of angle & i the x"—x.'

plane, the transformation tensor 3, reduces (0

cosd sing 0

#i= |- sing cosg 0 | 2.5)
0 0 1

It the transformation is applied 1w Eq.(2.3), one gets
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The orthotropic system is transformed 1o monoclinic with
nonzcro constants of ¢y, o, oy and ¢, And the
secular cquation (2.1) is writien in the expanded form in
terms of displacement components by applying the twensor
rranslormation, Eq.(2.4)-Eq.(2.6)
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where /, is defined as /= 7, — 0, £ Q& x,)6(xy - X YF(D)

for the line load and @ is x; component.

HI. Solutions by Fourier transform

Formal solutions are cffectuated by applying the Four-

wr transtorm 1o these Eqs.(2.7a-¢) in accordance with
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The general solution of the resulting differential equations

is then sought in the form
1=1,2,3 (3.2)

The steps leading to formal solutions of Egs.(2 7a-c) for
each of the two semi-infinite spaces (See Fig.{) will be
outlined [7). Body force, f,, first, deleted from Egs.
{2.7a-c), since the body force has been replaced by an
“artificial interface condition”, which is given by

du -
c&q—§;“:—=—%Q6(x|)i'(t), for xy2xj atxy=xi (33

du: .
c;,;;*ax—;= %Qé‘(x.)ﬂt). for xy<xf atxy=x}

Infinite Media

The Egs.(2.7a-c) lcad to the characteristic equation in
terms of {/, by suvbstituting Eq.(3.1) and Eq.(3.2). The
characteristic equation yields nontrivial solutions in J,,
thereby resulting in the sixth order algebraic equation in
a, whose g's have the further propertties,

ay=—a,, A==y, ag=—aqs (3.4)

Furthermore for each «, Eq.(3.3) viclds the displacement
amplitude ratio,

Vo= Vo= UpfUy=—[MA5— ApA /[ Apdyn- Apdy,]
W, = — W= U /U= —{Apdn = ApAnl[AnAn - Apdygl

(3.5

where the A is given in Appendix. Finally, using super-
position, the formal solutions can be written for the
displacements of Egs.(2,7a-c) and their associated stress

components using Eq.(3.2) as
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where D, is given in Appendix.

The above solutions with their various properties can
now be specialized to both artificial semi-infinite spaces
by the following steps. Inspection of the above solutions
indicate that each consists of three pairs of wave com-
ponents, each pair propagating in mirmror image fashion
with respect o the interface, namely along positive and

&
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negative x; directions. Since propagalion is expected o
emanate from the interface into both media, one arbitrary
reserves  a,, @, and g for the lower half-space; the
rcmaining  one's, namely described with @, @; and g
for the upper one. A formal solution of the field equ-
ation in monoctinic media have been obtained with the
unknown amplitudes ¢/,. The amplitudes /), will be

determined by implementing the artificial interface condit-
ions Eq.(3.3). With these solutions for the wave ampl-
itudes, solutions for infinite space can be written in terms
of 4=1,3.5

(Z‘\It ;2.2» ai) = “EX’ . (l’ Va‘ u/u )Ulqe - paju— il
— e e cpatry
( Ty. Oras 033) = q=§'5p( qu; DZ«; ng) Ulqe pady
for  x2x} 3.72)
~ e~ N
(3 w) = F (1= Vo W) Ue 7

(O, O3, Om) = q=$3 . K~ Dy, Doy, Di)Ue B

for xy<x} (3.7b)

where the displacement amplitudes, {/,, are given in

Appendix

Semi-infinite Media

Free Surface(x;= —d)

¢ Xy = x§

X3 %3

Figure 2. Semi-infinite media.

We now adapt the solutions of the infinite media Ey.
(3.7a,b) to solve for the case where the free boundary
intercepts the propagating pulse at some arbitrary location
parallel to the plane x;=490. It is assumed that the frce
boundary is located at x3=—4 as depicted in Fig. 2.
This tmplies that the free boundary is located in the up-
per region and thus can only interfere with the propagat-
ion fields in the negative x; direction. For this case, the

solution of Eq.(3.7a,b) will constitute an incident wave
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on a free surface. As a result, waves will reflect from
the free boundary and propagate in the positive y; dir-
ection. Thus, appropriate formal solutions, superposing the
incident waves and the reflected waves, can be adapied
from the solution of Eq.(3.6) in accordance with

G, ) = i ) ¢ 3LV, WM e ™
( T 0%, 01 = (B, Gno Gy} + 244 D Doy YU pe saket v

(3.8)

The boundary condition on (he free surface (Fig. 2) is
given by

Ta= Op= o =0 a x=—d 39)

By imposing the boundary condition on Eq.(3.8), we et
the standard simultaneons linear equation. The reflected
wave amplitudes are  yielded, which are given in Ap-

pendix,
IV. Cargniard-DeHoop Contour variation

Now [ will do the transformations back to the time-
space domain by using Cargniard DeHoop method. The
method is based on the following elementary propenty of
thc one-sided Laplace transtormn. Fiest, consider the Lap-

lace transform of u,. u, is obtained by

- T |~ Bac i
2ru, = .| Ve dy @n

The integration in the complex p-plane is carried ol

along the paths where

. t+ inx,

(= axy—jypx, O @@= -
Xy

with ( real and positive. Substitwtion of (3.2) into the

characteristic equation yiclds the sixth order polynomial

defining the Fourier parameter 2 ;

20x, x4, L)) = ’gl B,p"=10 (4.3)

The six root is composed of three parabolas with respect
to time f for a certain positon (x|, x3). and they are
symmetric about the imaginary 5 axis. Each of the par-
abolas is associated with four distinct roots of ¢ from
the characteristic equation, two of which comespond to the

lower half-space and others to the upper half-space, be-
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cause of (he boundedness of the wave. Each of the two

» represents a separate wavefront.

Infinite Media
Now the inverse Laplace transform can be obrained by

mere inspection of Eq.(3.7a,b)

47, (Ve V) N iV, V) an .
| })—u_ 'y J;'—“--D;;—'-(m )—J—;--]““—n)*
(V- Vb .. o = N
(O TR g LB (et

(W= WD adny !
[ (r;,}--g: - L IH (- 1)

(44)

The /. t, and {; are the atrival 1imes of the wave
fronts. In other words, they are the times that cotrespond
o the values of the imaginary 7 axis intercepts of the
two branches of 5. The notation 7+ denotes the branch
of », to the right side of the imaginary » axis and »
denotes the branch of p, to the left side of the ima-

ginary n axis. By using same technigue the displacement

of u» and uy are obtained similatly to ui, with mult-

plication of amplitude ratio, V,, W,, respectively, t.e (Vs
VaviD,, for uy, and (Vs-- VYW, fDyn for ua.

Semi-Infinite Media

By the same procedure, integral transform solutions of
Eq.(3.8) in the semi-infinitc media are inversely trans-
formed back to the space-time domain. The result of the

wave propagation is given by

AAey, © =1 (Ve VB 1 U0 Y = Dylii = By G} {1 ﬂ'l.
g D mllom e
(V- VWD U G D08 Dy GEMDL
Pl tr
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Dol em
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Up V3 THGE
[ LV - VD D) Dty DgGaiD,) '’ kI
! Dok Gr1=,
(V- VWD b (1 G = Dndi — DG )
17 mf
ﬂ’.‘ i1l }
Gro—g M n
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where G = 3 G GY = 240 GuVi

Gr= 3. GuW,

G, i given in Appendix. The remaining displacements

r=1,3,5

teh and 23 will be obtained by the same procedures.
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VI. Numerical iliustration and Discussion

Numerical illustrations are presented for the analysis.
An InAs cubic material is chosen and its material con-
stants are given by " =e»' =cy =83.20x10"° N/m?,
cp =c =en =45.26%10" N/m?, ey =cs' =g’ =
39.59> 10" N/m? and p =5.67 g/cm”. For a rotation

of ¢=30°, these properties transform 10 ¢ = ¢ =
51.2x10" N/m®, ey =16.0x10" N/m* c.=36.3
X10° N/m?, c3=cn=4.0%x10" N/m?% cp=0.3>
10" N/m2  cp=cs=236.1%10"" N/m% cy=ceu=

6.6x10" N/m’, c=40.0x10" N/m® It vonfirms
the earlier conclusion that the transformed matrix takes
the format of monoclinic symmewy. Fig. 3 presents snap
shot of absolute valuc of radical displacement ticld for
infinite spacc corresponding to chosen azimuthal angle
¢=30" on x —x, planc at fixed time (1= 0.21sec). A
spatial grid of 100x 100 points is generated for the [irst
quadrant. The remaining quadrants are then gencraled by
the mirror of the first quadrami. The vertical line Joud is
Incated at the origin that is the center of the picewe. Since
the medium is homogeneous, the wave ficld docs not
change as it propagates. The color scheme runs from
white (minimum) to black (maximwn). In this picture we
can clearly recognize the wave curves (three wave fronts
and lacunac). The picture shows that the contrbntion of
the longitudinal wave is strong at 8 = 0° whereas that of
the shear wave is strong at 9 = 90°,

Figure 3. Snap shot of displaccment field ar 1= 0.2psce of
InAs infintle system of @ = 30"

Fig. 4 presents snap shot of absolute vaiue of radical
displacement fields on x;—x3 planc of semi-infinite space
comresponding to ¢ = 30° at fixed time ((=0.2usec). In chis
figure, we can clearly recognize the wave curves (surface

wave and threc bulk wave forms). The surface wave peaks

are shown at inside of the longitudinal wave front and

near the honzonial plane surface.

Figure 4. Snap shot of displacement (icld at (=0.2pscc of
semi- infinite system

VII. Conclusion

Explicit solutions for the displacements du¢ to trans-
ient line toads, which include infinite, semi-infinitc spaccs
for the monoclinic system, arc obtained by uwsing Car-
gniarit-DeHoop contour. Numerical resultss whicl are drawn
from concrete examples of orthotropic symmetry are dJe-
monstrated. Wave equation is coupled with vertical shear
wave, longitudinal wave and hosizontal shear wave. As
the azimuthal angle approaches (o zero, horizontal shear
wave components disappear and other wave components
have numerical results close to those in orthotropic sys-
tem. But wave components can't be numerically calculated
by using final solutions in monoclinic system since the
displacement ratio |, have always zero value in case of
the orthotropic sysiem which banish all the displacement
amplitudes. So analytical solutions for orthotropic system
have to be driven by decoupling horizontal shear wave,
which will b adquate for the material system possessing
orthotropic  or higher symmetry, mansversely  isotropic,
cubic, and isotroptc symmerry. The solutions of the sys-
tem  with orhotropic  symmetry  will be simplified
those of isoropic systems by expleiling elastic propertics

of A2 and p. also.
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Appendix
Various coefficients are given by

Ay = c:-aqa?' -y £+ pw’
Ap= 0-150’2 O 52
Ay=—jlalc,+ cg)
Ap=cyd — &+ po®
Ap=—jtalcyt cp)

2 ki a2
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Uis= — Ug = FIDY(Va= V) Qe Dy 1)
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Ul = (R\Gyy — RyGoy + RsGy) (Do &™)
Ui = (R\Gyy = RyCoy + RsGa) (Do ™)
U7 = (R,G 15— RyGos + RsGs)/ ( Dy ™)
Dy = DGy — Doy + Dy Gy

Gy = Db — Dby, Gu=Dpbhg— Dudhg, Ga = Dyl — DDy
Gy = Dylig — Dy Dy, Gny= Dpdhg — Db, Ga= gy = Iy
G|5 = Dy = DyDoy, G-_;:,: D”D:u - Dg]nn. Gu= DHU-_ﬂ = I,
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