유기물 전기 발광 소자의 기술 개요

정태영
일리노이대 연수 연구원,
한국전자통신연구원 기초기술연구부 책임연구원.

황도훈
캘브리지대학교 화학과 박사 후 연구원,
한국전자통신연구원 선행연구원.

1. 서론

21세기 정보화 사회에서는 영상
산업에 있어서 대형화 및 평면화
그리고 여러 가지 기능을 포함하
는 디스플레이는 필수적인 것으로
발달된다. 디스플레이의 종류에는
여러 가지가 있지만, 그 중에서도
전기 발광(electroluminescence, 이하 EL로 표시)을 이용하는 소
자의 현재 각광을 받고 있는 LCD
외에 수많은 형태의 소자에 비해
응답 속도가 빠르다는 장점이 있
고 또 발광 형태이므로 화도가 뛰
어나다는 이점을 갖고 있다. 유기
물 및 고분자를 이용하는 LED는
낮은 적류 구동 전압, 박막 형태
가능, 발광 및의 균일성, 유리한
패턴 형성, 다른 발광 소자에 진
줄을 만드는 발광 효율, 가시영역에서
의 모든 색상 발광 가능 등의 이
점으로 인해 21세기 대형 평면 디
스플레이의 용용을 위해 매우 활
발하게 연구되고 있는 분야이다.

본 장에서는 유기물 전기 발광
소자의 작동 원리와 전기 발광 소
자를 이용한 디스플레이 기술 그
리고 이와 관련된 국내외의 연구
동향을 간략히 기술 하고자 한다.

2. 유기 발광 재료

유기물 전기 발광 소자는 재료
적인 측면에서 크게 유기 단분자
와 유기 고분자 물질을 이용한 소
자로 분류할 수 있다. 유기 단분
자를 이용한 전기 발광 소자에 대
한 연구는 1970년대 초반으로 이르
여져 왔으며 1980년대부터 본격적
으로 연구되기 시작했다. 가장 대
표적인 유기 단분자 발광 물질은
Alq3로, Alq3는 초록색 영역
(550 nm)에서 빛을 발하며 여러
가지 유기물 색소를 도핑함으로
써 초록색에서 발광색까지의 넓은
영역에서 빛을 낼 수 있다. 그리고
무기물질에서 연기 액화를 청
색을 나타내는 물질로는 anthra-
cene, phenylcyclo-
tadiene 유도체가 있으며, 그 외에
perylen 다음 제3장에 포함

<table>
<thead>
<tr>
<th>Structure</th>
<th>Name</th>
<th>Band Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALQ3</td>
<td>2.5 (G)</td>
</tr>
<tr>
<td></td>
<td>TPO</td>
<td>3.1 (HT)</td>
</tr>
<tr>
<td></td>
<td>Perylene</td>
<td>2.5 (R.G)</td>
</tr>
<tr>
<td></td>
<td>PBD</td>
<td>3.1 (ET)</td>
</tr>
<tr>
<td></td>
<td>TPBD</td>
<td>3.1 (B)</td>
</tr>
<tr>
<td></td>
<td>PPV</td>
<td>2.5 (G)</td>
</tr>
<tr>
<td></td>
<td>BDMOS-PPV</td>
<td>2.5 (G)</td>
</tr>
<tr>
<td></td>
<td>CN-PPV</td>
<td>2.2 (R)</td>
</tr>
<tr>
<td></td>
<td>PVK</td>
<td>3.6 (B)</td>
</tr>
<tr>
<td></td>
<td>PDS-PPV</td>
<td>3.0 (B)</td>
</tr>
</tbody>
</table>

표 1. 여러 가지 유기물 발광 소자 구조와 밴드갭, 에너지
및 발광 색상(R=적, G=녹, B=청, HT=전등, ET=전자 수
송층)
응용을 위해서 점데적으로 요구되는 양자 효율과의 지속적인 발전 면에서는 결정화 방지 등 해결해야 할 문제점들이 남아있다.

고분자로 유도한 전기 발광 소자에 대한 연구는 1990년 이전부터 조직되어 왔으며, 공약
poly(p-phenylenevinylene)(PPV)로부터 EL이 발전된 후부터 발전되어 왔으며, 고
물자에 의한 점의 영향을 미치는 전기적 물질로의 변화는
고분자는 입증 결합(혹은 "결합"")의 절합고
적 성질의 쌍일로 이적한 점의 비간극자, 고온에의 영향의 적용에, 점의 적 성질의 절합이 잘
배합한 새로운 종류의 반도체라고 할 수 있다.

대표적인 유기물 발광 물질로서의
화학 구조와 반도체 band (band gap) 에너지 그리고 발광 색상을 표 1에 비교하였다.

3. 전기 발광 에키나니

고분자로 유도한 전기 발광 소자에 대한 연구는 1990년 이전부터 조직되어 왔으며, 공약
물자에 의한 점의 영향을 미치는 전기적 물질로의 변화는
고분자는 입증 결합(혹은 "결합"")의 절합고
적 성질의 쌍일로 이적한 점의 비간극자, 고온에의 영향의 적용에, 점의 적 성질의 절합이 잘
배합한 새로운 종류의 반도체라고 할 수 있다.

대표적인 유기물 발광 물질로서의
화학 구조와 반도체 band (band gap) 에너지 그리고 발광 색상을 표 1에 비교하였다.

표 1. 유기물 EL 소자의 기본
구조

이 경우의 유도체가 크로로(약 5 eV) 동정 정류 주입 전극으로부터
의 레이저 처리로서의 발광 등
의 방법으로 고분자 박막을 얇은
면에 입체화가 낮은 발광도가 전극
출하하는 방법으로 소자들이 만들어
된다. 입체화가 낮은 발광도가 발광
물질로는 알루미늄, 마그네슘, 인, 강금
온도를 입체화가 그들의 합금이 주
로 많이 쓰인다.

위의 같은 경우로서 작용한 소
자와 및 개의 단계를 거쳐 발광을
착각으로 한다. 먼저, 입체화가 높은 전
극을 양극으로 하고 입체화가 낮은 전극
을 응용으로 하여 레이저 활성
바이어스를 소자에 가함으로써 정
경과 전자를 발광층에 주입한다
(양극 주입단계). 전극에서 고분자
가 입체화가 높은 정류 주입 전극으로 주입되며, 발광
이 발생한 뒤로 상향으로 나오게
하려고 하여 기판과 기판을 갖는
이 발광 챌린에서 합수기록 거
의 능을 통합한 것을 사용한다.
부채환 전용으로 인립수신해설
(ITO)에 많이 쓰인다.

ETL : electron transporting layer
EML : emission layer
HTL : hole transporting layer

이 경우의 유도체가 크로로(약 5 eV) 동정 정류 주입 전극으로부터
의 레이저 처리로서의 발광 등
의 방법으로 고분자 박막을 얇은
면에 입체화가 낮은 발광도가 전극
출하하는 방법으로 소자들이 만들어
된다. 입체화가 낮은 발광도가 발광
물질로는 알루미늄, 마그네슘, 인, 강금
온도를 입체화가 그들의 합금이 주
로 많이 쓰인다.

위의 같은 경우로서 작용한 소
자와 및 개의 단계를 거쳐 발광을
착각으로 한다. 먼저, 입체화가 높은 전
극을 양극으로 하고 입체화가 낮은 전극
을 응용으로 하여 레이저 활성
바이어스를 소자에 가함으로써 정
경과 전자를 발광층에 주입한다
(양극 주입단계). 전극에서 고분자
가 입체화가 높은 정류 주입 전극으로 주입되며, 발광
이 발생한 뒤로 상향으로 나오게
하려고 하여 기판과 기판을 갖는
이 발광 챌린에서 합수기록 거
의 능을 통합한 것을 사용한다.
부채환 전용으로 인립수신해설
(ITO)에 많이 쓰인다.
중양 이의자의 비발광 소멸 경로가 많기 때문입니다. 이들 비발광 경로는 혁성 과정에서 생성되는 에러가 발생할 수 있는 행동으로, 이로 인해 생성하는 무질서(disorder)에 기인한 양자와 방전 양(thermal)과 같은 양자적 활성화와 전자-활성화, 입자-양자 양체 (quenching) 등에 기인합니다.

양자 활성화 높이기 위한 방법으로는 음극을 인합수가 낮은 것을 사용하거나 전자 전환들이 증을 방출을 사용하거나, 또는 음극과 양극으로부터 전자와 정전의 주임을 원활히 하기 위하여 방전 캐이의 사이에 전자 수송층(charge-transporting layer)을 사용한다. 전자 전환도가 높은 oxadiazole 유도체들이 전자 수송층 (electron-transporting layer)으로 많이 이용되고 있으며, TPD와 같은 산화 아민 계통이 잘 수용 수송층 (hole transporting)으로 이용되고 있다. 전자 수송층은 전자와 정전의 주임을 원활히 하기 위하여, 전자 수송 물질의 HOMO 나 LUMO 준위가 방출층의 것과 어느 정도 어긋날수록 온반자의 이동을 억제하는 Blocking 작용을 하여 전자와 정전의 전달 확률을 높여 소자 효율을 향상시킨다. 그림 3에 전자 수송층의 전자 분배에 의한 전하 축적 도중을 도시하였다.

실제적으로 고분자 발광 소자를 제작하였을 때 소자의 특성을 평가하는 가장 기본적인 방법은 발광 스펙트럼과 소자의 전류-전압, 전류-발광 세기 그리고 전류에 따른 발광 등을 측정하는 것이다. 약 4와 그림 5에 분석 결과를 보면 4와 그림 5에 핵심 발광하는 PPV 유도체인 BDMOS-PPV를 발광층으로하여 제작한 전자 방전 소자(ITO/BDMOS-PPV/Al의 발광 스펙트럼과 I-V 그리고 I-V 특성 곡선을 도시하였다.와 같은 분석 결과를 보면 4와 그림 5에 핵심 발광하는 PPV 유도체인 BDMOS-PPV를 발광층으로하여 제작한 전자 방전 소자(ITO/BDMOS-PPV/Al의 발광 스펙트럼과 I-V 그리고 I-V 특성 곡선을 도시하였다.15 제작된 소자는 약 510 nm의 녹색 영역에서 최대 발광하여 550 nm와 500 nm 두 개 이상에서 적당한 발광을 보인다. PL과 EL의 피크가 같은 파장대에 존재하는 것은 PL과 EL의 발광 원천이 같음을 의미하며 두 피크 모두 희미하게만 나타내며 장파장의

그림 2. EL에서의 발생 과정 도식도.

그림 3. 전자 수송층에 의한 전선

그림 4. ITO/BDMOS-PPV/Al 소자
의 반도체, PL 및 EL 스펙

그림 5. ITO/BDMOS-PPV/Al 소자
의 I-V 및 L-V 특성 곡선.
4. 유기물 전기 발광 소자를 이용한 디스플레이 기술

유기물 전기 발광 소자 연구의 궁극적인 목표는 이를 이용한 컬러 디스플레이 설계에 있다고 할 수 있다. 유기물 발광 소자를 이용하여 컬러 디스플레이를 실현하는 방법은 여러 가지 연구 중에 있으며, 일부는 상용화에 근접해 있다. 그중 대표적인 4 가지 방법을 소개하면 다음과 같다.

두 번째 방법은 천연 발광층(color changing medium)을 이용하여 R, G, B 화소를 형성한 방법이다(그림 5(b)).

고화도의 정색 발광 소자를 이용하여 발광한 빛의 발광(PL) 효율이 우수한 R, G, B의 세 발광층을 이용하여 컬러 화소를 형성하는 방법이다. 이 방법을 이용하면 유기 용매에 악한 유기물을 가능하게 하는 과정이 줄어들며 미세 패턴으로 가공할 수 있다.

유기물 디스플레이의 세계적인 연구 동향을 보면 미국의 Kodak와 일본(Pioneer, TDK, Idemitsu Kosan, Kyushu Univ., Yamagata Univ.) 등에서 주로 유기 단판을 이용한 디스플레이 연구에 주력하고 있으며, 미국(UNI-AX, HP, Xerox, UC Santa Barbara 등)과 유럽(CDT, Philips, Cambridge, Linkoping Univ. 등)에서 고분자와 이용한 디스플레이 연구에 주력하고 있다. 유기 단판 자 및 고분자 ELD의 현재의 최고 기술 수준을 표 2에 요약하는 데, 이것에 알 수 있듯이 이 분야의 기술 수준은 상업화에 매우 근접해 있으며, 최근 일본의 Idemitsu Kosan에서는 고화도의 정색 유기 ELD와 백색 발광층을 이용하여(그림 6의 (b) 방법) 72
<table>
<thead>
<tr>
<th>대표적 물질</th>
<th>유기 단분자 ELD</th>
<th>유기 고분자 ELD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alq3 (Green)</td>
<td>PPV (Green), MEH-PPV (Red)</td>
<td></td>
</tr>
<tr>
<td>소자제작방법</td>
<td>전공 증착</td>
<td>spin coating, doctor blade 증</td>
</tr>
<tr>
<td>방광효율</td>
<td>< 15 Im/W</td>
<td>< 3 Im/W</td>
</tr>
<tr>
<td>최고회도</td>
<td>19000 cd/m2 (BeBq2)</td>
<td>약 10000 cd/m2 (MEH-PPV)</td>
</tr>
<tr>
<td>구동전압</td>
<td>5-10 V</td>
<td>2-3 V</td>
</tr>
<tr>
<td>수명 (T1/2)</td>
<td>5000-50000 시간</td>
<td>2000-10000 시간</td>
</tr>
<tr>
<td>응답속도</td>
<td>< 0.1-1 μs</td>
<td>< 0.1-1 μs</td>
</tr>
<tr>
<td>작동온도범위</td>
<td>< 60 °C</td>
<td>< 100 °C</td>
</tr>
<tr>
<td>이동도</td>
<td>10^2 - 10^3 cm^2/Vs</td>
<td>10^4 - 10^5 cm^2/Vs</td>
</tr>
</tbody>
</table>

그림 7. 구름성지는 기관 위에 제작한 7-segment 전기 발광 소자 (ETRI 제작)

참고 문헌

