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Data Availability Scheduling for Synthesis
Beyond Basic Block scope

Jongsoo Kim

Abstract

High-Level synthesis of digital circuits calls for automatic translation of a behavioral description to a structural design entity
represented in terms of components and connections. One of the critical steps in high-level synthesis is to determine a particular
scheduling algorithm that will assign behavioral operations to control states. A new scheduling algorithm called Data Availability
Scheduling (DAS) for high-level synthesis is presented. It can determine an appropriate scheduling algorithm and minimize the
number of states required using data availability and dependency conditions extracted from the behavioral code, taking into
account resource constraint in each control state. The DAS algorithm is efficient because data availability conditions, and
conditional and wait statements break the behavioral code into manageable pieces which are analyzed independently. The output
is the number of states in a finite state machine and shows better results than those of previous algorithms.

[. Introduction

The goal of high-level scheduling is to optimally asSign the
operations specified in the behavioral description of a

‘synchronous digital system to a sequence of control steps,

which correspond to a basic machine cycle. Control steps are
then collected into groups and each group is assigned to a
state(control state) of an associated synchronous sequential
control circuit. State transitions of the control circuits supply
synchronizing trigger signals to the data paths. A good
schedule will result in efficient utilization of hardware
resources in the data paths and the smallest number of states
in the control circuits. There are. two basic types of
scheduling algorithms [9, 13, 17]: time-constrained and
resource-constrained. In time-constrained scheduling, the
maximum time allowed to process data from the input stream
is specified and the main objective of scheduling is to
minimize the necessary hardware resources. The main
objective of resource-constrained scheduling is to get the best
performance under given hardware constraints, such as chip
area or the number of functional units. In order to balance
performance and area, the two approaches must be combined.
However, the high-level scheduling task, which determines
the area-speed trade-offs, is too complex to allow a general
optimal solution. It is known that scheduling is an
NP-complete problem [2,3].
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In order to simplify the scheduling problems, many
high-level scheduling algorithms consider only specific
classes of applications, such as digital filters and pipe-lined
behavioral descriptions [1,7,10-12,16,18]. For example,
Force-Directed Scheduling(FDS), which is a time-constrained
algorithm, aims at reducing the total number of functional
units by redistributing operations that use the same type of
functional unit evenly into the available states through
statistical method [20-23]. Integer Linear Programming(ILP)
is a mathematical approach to find optimal schedule in terms
of the number of functional units [15]. Besides these
representative algorithms there are many other scheduling
methods in the context of high-level synthesis, such as
percolation-based  scheduling, simulated annealing, and
path-based scheduling [5,9,19,24]. Path-based scheduling is
quite different from the other algorithms in which minimizing
the number of functional units is the main consideration. The
main objective of path-based scheduling is to minimize the
number of control states needed to execute the longest paths
under given timing and area constraints. The main
disadvantage of the path-based scheduling is its computational
complexity which is exponential in the number of conditional
branch and synchronization statements, since it must expand
all possible execution paths. A more detailed discussion can
be found in [2].

In this paper, data availability scheduling(DAS) is
presented for synchronous digital systems written in VHDL
behavioral code. This scheduling can overcome the
shortcomings of the path-based algorithm, while accom-
plishing the goal of minimizing the number of states. The
central theme of the DAS is that the state minimization
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problem is highly  constrained. Thus, general global
optimization, which introduces exponential computational
complexity, is unnecessary. The DAS algorithm identifies a
number of operations which unequivocally require state
transitions. Optimization of the assignment of operations to
states can then be performed on local segments of the

execution paths between the operations which require state °

transitions. The proposed DAS algorithm exploits the
available parallelism limited by resource constraints in
minimizing the number of states.-

This paper is structured as follows. The next section
describes the foundation of DAS scheduling algorithm.
Section 3 presents how to find state transition conditions.
Section 4 gives the details of the algorithm. This paper ends

with a comparison of the results obtained by this algorithm -

with other reported short results.

Il. Foundation of the DAS Algorithm

One foundation of this new scheduling algorithm comes
from the definition of sequential circuits that process
operations according to a given deterministic finite
automaton. Data availability is a basic characteristics of
sequential circuits. Thus, the DAS algorithm suggests a. new
idea for how to easily find such points based on data
modality. That is, the proposed algorithm can determine the
exact time that data is needed. If data must be read from a
variable within a behavioral process body before writing the
data, it must be already be saved in a storage unit. Then, a
trigger signal is required to write data to storage, and this
trigger signal must be linked with state information.
Therefore, the data availability condition can be used to find
state separation points.

Another foundation is found in the allocation process.
Allocation maps the scheduled assignment operations into
registers if LHS variables need to be stored. Trigger signals
for loading new data into these registers are generated by
state transitions of the finite state machine’s control circuits.
The state transitions determined by register allocation can be
anticipated during. scheduling and can identify operations
which must be scheduled into separate states. Furthermore,
the number of registers and interconnections being determined
in the allocation phase can be estimated in advance during
scheduling.

III. State Transition Conditions and
‘RBS Variables

Some state transitions are required in order to trigger the

storing of data in a register. Such state transition conditions
are classified into two. different types by Camposano [2]:
intrinsic and extrinsic. Intrinsic conditions express the fact
that different data cannot be stored simultaneously into one
variable. That is, two sequential assignments having the same
left hand side (LHS) variable must be performed in two
separate states. Extrinsic conditions are derived from explicit
statements in the design description. The wait statement of
the hardware description language is one example of extrinsic
conditions. Such conditions need a register in order to
synchronize with other statements. Another , example of
extrinsic condition is the resource constraini. That is, if a
designer specifies the maximum number of available
hardware functional units, the scheduling algorithm must
separate the operational nodes due to violation of the given
hardware constraints. ) _

This research therefore begins to ideﬁtify necessary state
transition conditions by analyzing register requirements. The
easiest way to find register requirement conditions is to
calculate the lifetime of variables. If the lifetime of a variable
must span more than one state, then a register is needed to
hold previous data for the next state. If the clock cycle is
predetermined and it is relatively short, then all the operations '
which manipulate a variable for- relatively long periods
cannot be executed within one clock cycle. Thus another state
is necessary to execute the remaining operations and the
variable has to be saved in a register. If the clock cycle is
not predetermined, the clock period can be made long enough
to process the series of nodes in one state. This method does
not require an extra register, but it may slow down the
overall processing speed. The former method can speed up
the process, while requiring an extra register. Some
researchers have investigated scheduling based only on such
register requirement conditions [25], but the computation time
and the number of total registers determined by the lifetime
method were greater than those of the path-based method [2].

Another method of finding register requirement conditions
is to check the access modality of variables. This is a new
approach suggested in this paper as mentioned in the previous
section. That is, when a variable is read before an assignment
to it has taken place within the innermost loop or branch
construct, it requires a register. Thus, the register requirement
condition is determined from a “Read Before Set”(RBS)
variable usage in contrast to. the path-based scheduling
algorithm which exhaustively traces to find out state
separation points. . .

Typical behavioral descriptions do not include many
intrinsic state transition conditions. Generally, only VHDL
variables are candidates for RBS status. The other two VHDL
objects (signal and constant) do not require registers. But all
variables need not be stored in registers always. For instance,
variables that do not need to hold values for more than the
duration of one cycle(i. e. not across state transitions), do not
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need storage or state transition. However, a variable, whose
value is read within a loop body before it is assigned, needs
a register to hold the datum for successive iteration, even if
it had been assigned a value before the loop was entered.
Therefore, it is possible to identity more RBS nodes through
this extended definition of RBS. _

In addition to the extended RBS conditions and the
extrinsic conditions derived from hardware constraints, there
are two more state transition conditions. The first is a
technology dependent condition. According to the previous
RBS definition, a test condition that is the header of a loop
or branch need not always have RBS status. Therefore, the
header node can be combined with a previous control step in
constructing the states. But this combination may sometimes
lead to incorrect results. For instance, assume that the current
input data in master-slave registers will not be available at
the output port until the next clock cycle. Then, the ‘test
condition of a loop or branch can only be safely evaluated
when the test value is available in the next state. A similar
case occurs when the values of test variables in a loop
statement are initialized first and subsequently changed inside
the loop body. Thus, the loop test condition and assignment
to the tested variable(s) must be separated to ensure a safe
operation sequence. In both cases, the available time of test
condition’s output will depend on the length of propagation
delays. Therefore, this condition depends on the technology
mapping

The second condition stems from using a programming
oriented design description. In a programming language, the
flow of execution cannot jump directly into a loop body. This
rule must also be enforced in scheduling to prevent unwanted
side effects. It is sufficient to consider the header node of the
loop statement because it must always be executed first. If
the header node was combined with nodes from outside the
loop in one state, nodes outside the loop would be executed
repeatedly and create unwanted side effects. Therefore, the
starting node of a loop structure cannot be merged with any
previous node. In summary, state transition conditions
resulted from RBS(collectively called RBS conditions) and
others are summarized as follows: )

(1) Variable can be assigned only once in one state.

(2) A wait until statement must be scheduled separately from
previous nodes.

(3) An output port can be written only once in one state.

(4) The variable assignment and variable test statements must
be separated. '

(5) Functional units can be used only once in one state.

(6) RBS variables, which need registers, are defined by
limiting the scope of the RBS test to within a loop body.

(7) The header statement of a loop cannot be in the same
state with previous statements as a side effect occurs
outside the loop.

IV. The Data Availability Scheduling
Algorithm

In this section, the DAS algorithm is defined. The goal of
the DAS algorithm is not only to reduce the computation
time, but also to minimize the number of control states. To
accomplish both goals, the control and dataflow graph(CDFG)
is the most suitable intermediate representation, because it
exhibits the available parallelism through combined
dependency and control flow. In addition, the CDFG can
provide critical path information, which is essential to the
DAS algorithm. The critical path is the longest path from the
first to the last control step and indicates the maximum
number of control steps. Hardware constraints may force the
number of control steps to be increased from what had been
determined from the purely behavioral VHDL code. In case
of muitiple equidistant paths, the path that traverses more
RBS nodes is selected as the critical path. RBS nodes
correspond to operations which satisfy a RBS condition. The
RBS nodes in the critical path are called reference nodes.

Call ALAP(N) and ASAP(N);
Calculate_Mobiltity(N);
Mark_Critical_Path(N);
Find_Critical_Path(N);

i=1

--unbalanced schedule.
--mobility calculation.
--check RBS conditions.

--longest path with most RBS nodes.

start = 1;

while i <= last do --loops until the last control step.
if (RBS(Ncp,i) = true) then ) --between pairs of adjacent RBS nodes.
Apply_Constraint(start, I-1); --resource constraints to set RBS.
Move_Node(start, 1-1); --move RBS nodes to subsequent
start = I, --reference node.
endif

i++;
endwhile
Apply_Constraint(start, last); --take care of nodes between last RBS
Move_Node(start, last);
Group_Node(N);
Merge_State(M),

Find_State_Transition(L);

--node and bottom node.
--collect nodes between RBS nodes.
--apply chaining constraint,

--determine transition conditions.

Fig. 1. Data Availability Scheduling Algorithm.

Figure 1 shows the pseudo code of the DAS algorithm.
The call to ASAP and ALAP is necessary to calculate node
mobility, where N is the set of nodes to be scheduled. The
function “Mark_RBS(N)” uses conditions (2), (4), and (6)
listed in Section 3 to find RBS nodes and set an RBS flag.
Next the function "Find_Critical_Path(N)" uses the RBS flag
to determine the critical path and returns the critical path that
has the most RBS nodes. When there is more than one
critical path with the same number of RBS nodes, one critical
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path is arbitrarily chosen. In the while loop, Ncp,i are the
nodes in the critical path, where the loop iterates i times over
the control steps until i reaches the value of last. The
parameter last is the value of the last control step number.
The while loop processes nodes between pairs of adjacent
RBS nodes. It consists of two - functions; “Apply_
Constraint(start, i-1)" and “Move_Node(start, i-1)". Both
functions use the control steps of a RBS pair of RBS nodes
~as parameters. The first function “ Apply_Constraint(start,
i-1)" applies conditions (1), (3) and (5) to set the RBS bit
of nodes in all paths between control steps start and i-1. This
function also applies the designer’s constraints, such as the
maximum number of functional units. The second function
"Move_Down(start, i-1) moves the nodes marked by the
function “Apply_Constraint(start, i-1)" to the control step i of
reference node Ncp,i, if it is within the node’s mobility
ranges. This reduces the number of state transitions required,
because all nodes in one control step can be triggered by the
same clock edge. If the node cannot be moved due to
mobility, then the: node will require an additional
unconditional state transition. Notice that nodes are moved
only if their RBS flag is set.

Afier the while loop, a set of nodes between control steps
of the last RBS reference node in the critical path and the last
control step will not have been processed unless the last
control step contains an RBS nodes. Thus, the two functions
“Apply_Constraint() and Move_Node()” outside the while
loop are to process the remaining nodes. The next function
“Group_Node(N)"” simply collects nodes separated by RBS
nodes into M groups. After that, the function
“Merge_State(M)” is called to combine compatible groups
associated with new RBS nodes created by the function
“Apply_Constraint()” which cannot be merged with the
preceding groups. Thus, the function “Merge_State(M)”
investigates small numbers of merging candidates instead of
processing the total number of groups M. Finally, the
function “Find_State_transition(L)" builds the state diagram of
the control circuit based on the transition conditions required
by the nodes within the groups. L is .the number of state
transitions. In general, these conditions are derived only from
branch, loop or wait statements, Therefore, this function
processes a small number of groups only. Further details of
state transition formulation can be found in [2].

To illustrate the DAS algorithm, we use the prefetch
example shown in [2]. Figure 2 is the behavioral code of
prefetch written in VHDL. The path-based scheduling
expanded 3 paths and built a finite state machine with 2
control states after applying the clique algorithm. See more
detail in [2]. Figure 3 is the CDFG where the asterisks
indicate the RBS nodes. All nodes except 1, 2, and 3 have
0 mobility in this graph. There are 2 critical paths: one is P1
= {4, 5, 6, 7,-8, 10} and the other is P2'= {4, 5, 6, 7, 9,
10}. We choose Pl arbitrary. Thus the reference nodes are

{5, 7, 8}. The functions, Apply_Constraint(start, i-I) and
Move_Node(start, i-1), are called with the control step
parameters in the sequence of (1, 1), (2, 3), and (4, 4). The
above two functions cannot find any movable RBS nodes that
must be aligned to reference mnode. The function
Group_Node(N) groups the nodes 1, 2, 3, 4, 5, and 6 into one
group, and nodes 7, 8, 9, and 10 into a second group. Thus,
there are two states. Finally the state transitions between
these states are determined by the condition "ire="1"".
Therefore the DAS algorithm also yields the same number of
states as the path-based algorithm.

entity prefetch is .
port (branchpc, ibus : in bit32;
branch, ire :in bit;
ppc, popc, obus : out bit32);
end prefetch;

architecture behavior of prefetch is :

begin
process
variable pc, oldpc : bit32 :=0;
begin .
ppc <= pc; -1

popc <= oldpc; -- 2
obus <= ibus + 4;-- 3
if ( branch = ’1")-- 4

then
pc := branchpc;-- 5
end if ; -~ 6
wait until (ire = ’1”)-- 7
oldpc := pc; - 8

pci=pc+4;, -9 10
end process;
end behavior;

Fig. 2. Behavioral Description Example.
" 1,23456
ire

ire
789,10

Fig. 3. CDFG and Final States.
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The computational complexity of the DAS algorithm
" depends on the total number of nodes, the shape of the
CDFG, and the number and position of the RBS nodes in the
CDFG. In extreme cases, there are N RBS nodes in the
critical path of length N. Then there is nothing for the
scheduler to do. But it is rare to find this kind of description.
In general, the number of RBS nodes will be smaller than the
length of the critical path. Therefore, the order of
computation is given by O(N x B), where N is the number
of RBS nodes in the critical path, and B is the number of
nodes that must be scanned with each RBS node. However,
when the number N increases for a given CDFG, the number
B gets smaller. Therefore, the total computation overhead will
saturate at a certain value. More precisely, the computation

time will be given by g}le',where Bi is the number of nodes

being scheduled at the ith RBS node. This analysis shows
that the algorithm operates most efficiently when there are
many RBS nodes in the critical path.

V. Results and Comparisons

Only two papers have reported results on the benchmark
program for the general finite state machine [2,25], and these
two reports have used different design environments. The
bridge synthesis system has used a behavioral description
language called FDL2, while the path-based system has used
the description of the 1989 Workshop on High-Level
Synthesis for the Intel 8251 USART[27]. The same
benchmark program written in VHDL [28] is used in this
work.

Table 1. Comparison with other algorithms.

Model Method | Add | Sub | Mul | state | CPU
path 1 1 - 1 <1
COUNTER DAS 1 1 - 1 <1
path - 1 - 2 <1
GCD DAS - _ 1 - 2 <1
path 1 - - 4 <1
PREFETCH DAS 1 - - ) oy
path - - - 8 <1
T 1 Das [ - [ - [ - 6 [«
path 1 1 2 4/1 <1
Diffeq . | force 1 1 2 4 <1
DAS 1 1 2 411 <1

path - 1 - 22 357.6

8251 xmir | bridge - 1 - 37 300.2
DAS - 1 - 20/16 <1

Table 1 lists the number of states generated by different
algorithms under the stated constraints on the number of
functional units, and the reported synthesis CPU times for
three different benchmark problems. COUNTER, GCD, and
PREFETCH are written in VHDL [27]. COUNTER is a 4-bit
counter. GCD is a greatest common divisor example.
PREFETCH is an instruction fetch description different from
Figure 2. The TLC example is the traffic light controller from
[28]. The Diffeq example is the differential equation solver
from [23, 28]. The 8251 xmtr indicates the transmitter part of
the Intel 8251 USART. In the TLC example, path-based
scheduling created eight states, while the DAS algorithm
needs only six states. In the Diffeq example, force-directed
and path-based scheduling yield the same result. The
path-based algorithm specifies only one state, if the exit
condition of the loop is assumed true at start[2]. As the
path-based scheduling, the DAS algorithm also yields one
state, because there are no RBS nodes in the behavioral
description.

The total number of nodes of the 8251 transmitter part in
the VHDL benchmark program is 97. These nodes are
distributed along 42 control steps in the control flow graph.
Initially, there are 28 RBS nodes in the control flow graph.
The DAS algorithm generates only 16 states, if a series of
test conditions of “if statements” can be processed in one
state. If test condition must consume one state each, then
20 states are needed. In general, it is plausible that a
number of test conditions can be processed within one
cycle, since the test conditions can be realized by simple
combinational circuits. The bridge system yielded 37 states
for the same design problem (Intel 8251), while the
path-based  algorithm gave 22 states under more
computation time.

The execution times of these algorithms couldn’t easily be
compared, since all scheduling algorithms were run on
different machines, The path-based algorithm was run on am
IBM 3090/200 machine under CMS VM/SP 4.2 with less
than 7 Mbytes of memory. For the DAS algorithm, the
computation time is almost negligible on a PC even with an
Intel CPU 486/33 and 8 Mbytes of RAM. The indicated
computation times of DAS algorithm include only the
scheduling overhead from CDFG and exclude the remaining
logic synthesis.

VI. Conclusions

There are two main contributions of the DAS algorithm.
First, it can detect whether the behavioral input description
may be mapped to a FSM or not.” None of the available
scheduling algorithms perform equally well in diverse
domains. Some algorithm, such as percolation-based
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scheduling, is suitable for pipeline architectures, while
others, such as DAS or path-based scheduling, are suitable
for control-oriented - descriptions. Thus, a particular
scheduling algorithm may require more functional units and
more complicated control circuits than another algorithm on
a particular ‘design problem. Therefore, it is necessary to
know which algorithm is suitable for a given design.
Unfortunately, previous algorithms were tested only on
small examples in limited domains. No discussion was
provided as to which domains the algorithms are suitable
for. The new scheduling algorithm suggested in this paper
can be used to determiie an appropriate scheduling
algorithm depending on the input description, even though
its ultimate goal is to schedule the operations in the input
description using a finite state machine. Since our algorithm
locates the registers that need trigger signals to hold
information and the wait until statements that need state
transition iﬂformation, it is possible to detect whether a
behavioral description belongs to the class of control or
popeline-oriented problems. If there are many RBS nodes in
the input description, finding an optimal control circuit is
important, and DAS is appropriate. If there are no RBS
nodes, a behavioral input description can be synthesized
either as a pipeline or as a purely combinational logic
circuit by the ILP algorithm, for example.

Second, the new scheduling algorithm can reduce not only
the final number of states but computation overhead as well.
The path-based system uses clique partitioning‘, which is very
costly in computation time, to find a set of minimum,
non-overlapping intervals. It also uses a control flow graph
modified by another scheduling algorithm, such as list
scheduling, to generate the execution paths. The bridge
system has focused on detecting the variables' and signals
through the lifetime scheme. Although the bridge algorithm
has used a local slicing technique, it still has limitations on
branching constructs. These approaches have also resulted in
- additional computation overhead because they operate
globally. The DAS algorithm uses the CDFG to exploit the
parallelism and the RBS concept to make local slices along
the critical path. These two factors can contribute to reducing
the number of states and the computation time compared w1th
other scheduling algonthms

As future research, the concebt of RBS conditions can also
be applied in path-based scheduling. The RBS nodes in the
control flow graph can localize processing when constructing
the interval graph. Therefore, the computational overhead can
be lessened. The régister requirement conditions uncovered in
the DAS algorithm will help to more tightly integrate
scheduling and allocation which’ should improve the
efficiency of high-level scheduling and make its results more
accurate. Finally, more study is needed to address the lack of
pipeline scheduling capability, and to make scheduling
sensitive to technology dependency.
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