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Robust Adaptive Sliding Mode Control of Robot
Manipulators Using a Model Reference
Approach
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Abstract

In this paper, a robust adaptive sliding mode control algorithm for accurate trajectory tracking of robot manipulators is
proposed, with unknown parameters being estimated on-line. The controller is designed based on a Lyapunov method, which
consists of a adaptive feed-forward compensation part and a discontinuous control part. It is shown that, in the presence of
the uncertainty and the disturbances arising from the actuator or some other causes, the tracking errors is bound to converge
to zero asymptotically. An illustrative example is given to demonstrate the results of the proposed method.

I. Introduction

Mathematical modelling of a . mechanical manipulator
results in a sét of coupled nonlinear differential equations.
Physically, these nonlinearities arise from inertial loading,
complex reaction forces among the various joints and
gravitational loading of the links. Furthermore, in performing
tasks, the characteristics of the manipulator payload, such as
mass, can change from task to task. Thus, robotic
manipulators are highly coupled and nonlinear ‘multivariable
system with unknown parameters.

The control of a manipulator will always be challenged by
the uncertainty as mentioned before and the disturbances
possibly arising from the actual running of the actuator or
some other causes. Therefore, robustness is an important issue
in robotic controller design. There are several control
strategies which provide robust control for robotic
manipualtors. In recent years increasing attention has been
given to controller designs of robot manipultors that utilize
the theory of variable structure system.

Among developed algorithms using the theory of VSS,
several approaches have been considered. Some choose a
.control that makes each surface attracting in order to
guarantee the asymptotic stability of their intersection, which
constrains the problem unduly, resulting in a control law
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defined implicitly by a set of fairly complicated algebraic

‘inequalities[1-4]. Others do exploit the known structure of

system dynamics, resulting in a control law that ensures the
stability of the intersection of the surface without necessarily
stabilizing each individual one[5-6]. Another class of
algorithms is based on the combination of the deterministic
approach to the control of uncertain systems[7] and VSS to
design manipulator control algorithms[8-10]. C.Y.Su and
Y.Stepanenko[11] proposed for an adaptive sliding mode
control of robot manipulators by using a general sliding
surface, which can be nonlinear or time-varying. In [12], an
adaptive sliding mode control scheme is developed for
accurate tracking control of robotic manipulators, with
unknown manipulator and payload parameters being estimated
on-line.

In this paper, unlike usual adaptive sliding mode control
schemes[11,12], a robust adaptive sliding mode control
algorithm for robot manipulators is developed based on the
model reference adaptive systems(MRAS) technique[13]. The
reference model is composed of simple double integrator. The
proposed controller is designed based on a Lyapunov method,
which consists of a adaptive feed-forward compensation part
and a discontinuous control part. The role of the com-
pensation part acts to maintain the tracking errors on the
sliding surfaces, and the control part overcomes the effects of
the uncertainties and bends entire system trajectory to the
sliding surfaces until sliding mode occurs. Moreover the
algorithm is computationally simple, due to an effective
exploitation of the particular structure of manipulator
dynamics.

The organization of this paper is as follows. In Section II
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the robot dynamics and its structure properties are reviewed.
Section 1Il presents robust adaptive sliding mode control
algorithm using the model reference adaptive system. Section
IV discusses how to eliminate undesirable chattering.
Simulation results are presented in Section V to demonstrate
the performance of the proposed controller. Section VI
presents brief concluding remarks.

II. Dynamic model of robot manipulators

For a general open-chain n-link rigid manipulator, the
dynamic model can be derived either using Lagrangian-Euler
or Newtonian-Euler method and can be expressed in a
symbolic form '

M(@q + B(q, 9)q + G(@) = ¢ + oY)

where q, q, qR" is the joint position, velocity and
acceleration vectors; : =R" is the actuator torque vector
acting on the joints of the robot; M(q) eR™ is the symmetric

positive definite inertia matrix; B(q, q)q €R" is the vector of
centrifugal and Coriolis torques, G(q) €R" is the vector of
gravitational torques, zq =R" is the vector of uncertainties
presenting friction, torque disturbances, etc.

As remarked by several authors([11, 12, 14-16]), the robot
model (1) is characterized by the following structural
properties, which are of importance to our stability analysis.

Property 1. There exists a vector § €R™ with components
depending on manipulators parameters(masses, moments of
inertia, etc.), such that

M(q)q + B(g, g + G(@) = Y(@q, g, Q) 6 )

where Y(q, q, Q) €R™™ is called the regressor and 6 eR™ is
the vector containing the unknown manipulator and payload
parameters.

Property 2. The two n x n matrices M(q) and B(q, q) are
not independent. Specially, given a proper definition of

B(q, E{), the matrix (M(q) - 2B(q, d)) is skew-symmetric [12,
13].

III. Robust adaptive sliding mode controller

In this section, an adaptive sliding mode control scheme
for robot manipulators is developed based on the model
reference adaptive systems(MRAS) technique. We will use a
reference model described by

Gm = d/dt(qm) , A3)

u= d/dt(qm) @

where ueR" is the acceleration input which will be

" determined in the following and qm, qm =R" are the angular

position and velocity vectors of the reference model.
First we chose u according to the following:

u=qs+ Kv(da - 9 + Ke(qa - Q) 5)

where qq, qa, qa €R" are rtespectively the position, velocity
and acceleration vectors of the desired trajectory and the
matrices Kv, Kp are PD gains which are seleted such that the
characteristic equation:

PP+ Kvp+Ke =0 ©)

has all its root in the left hand side of the complex plane.
Let us define the sliding surface ST = [s;-++84] = O as

S = e(t) + Ce(t) @

where C = diag(c: . . . ¢n) is positive definite gain matrix and
e()=q(t)-qm(t) is the tracking error between the reference
model and manipulator angular position vector.

In order to derive the adaptive sliding mode law, the
following assumption is required.

Assumption Al: The desired trajectory qu(t) is chosen such

that qq, (id, dd are all bounded signals.
Assumption A2: The effects of input disturbance are
assumed to satisfy the following:

lza I < o1+ osliSl ®

where ¢,>0, 6,=>0 are constants but unknown

Remark 1. The sliding variable S is a measurable signal
vector for all time since it is only the function of positions
and velocities of the actual joints and positions.

Remark 2. The assumption A2 is quite reasonable as far as
the effects of actuators, friction forces or some other causes
are concerned since it is assumed to be unbounded and
fast-varying.

The adaptive sliding mode control law is now chosen as

) = Y@ G Qm qum) 6 - 0,8 - 5,5gn(S) - Ksgn(S)(9)
b=—TY"(q, & Gm GmS (10)

o= &SI 1)
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Gy= £,lISI (12)

where 6 <R™ is the vector containing the parameters
estimated on-line and 4 is its estimate; ' eR™™ is a
symmetric positive definite matrix, usually diagonal, ¢,>0,

¢,>0 are arbitrary constants, and K=diag(k; - ky) will be
determined in the following.

Theorem :

For a mechanical manipulator -governed by (1), with the
sliding surface S=0 described by (7), if the adaptive sliding
mode control laws given by (9) - (12) are used, the tracking
error between the desired trajectory and manipulator angular
position converges asymptotically to the zero, i.e,

lim[ ¢ 4() ~a(]=0.
Proof :
Define the Lyapunov function candidate as

N . —_ 2
VO = %SM@S + % 6" 16+ 1 N g oY e, (13)

where § = 4 -6<R™ is the parameter etimation error
vector.
Differentiating V(t) with respect to time yields

VO = ¥S™™M@S + %S™M@S + BSTM@S + % 6 %
. ) .
YBE TG Som oMo L, 14)
i=1

Using the Property 2 that the matrix M(q) - 2B(g, @) is
skew-symmetric, equation (14) can be represented as

V() = S'M@S + Blg, 9S) + § 6
2 .
+ Mo FN =0 ¢, , (15)

To derive the M(q)S$ term, differentiating S with respect to
time yields

$ =40 - au® + CEO - W) (16)

Multiplying the matrix M(q) to (16), inserting (1), and
making use of Property 1 gives

M(q)S

(® + 22 + (M@C - B(g, )90 - M(9)Cqm(®)
: G(@) = M(@)m(®)

Substituting (9) into (17) yields

M(q)s. = ~Y(q7 (is (.]m, .q'm) é\ - 325 = é\lsgn(s) - KSgIl(S) t 14

{® + za - Y(q G G Gm) 6 an

- Y@, G G, ) 6
= Y@ g Gm Gm) 6 - 055 - 0;580(S) - Ksgn(S) + za (18)
Whel‘e Y(q, él, (im, (.l;n) g = Y(qa .qa .qm’ .(.]rn) g - Y(q’ ‘i, (im5 c'lf.ﬂ) 6

Using the above result, equation (15) becomes
V() = STY(@ @ dm @) G- 655 - 615gn(S) - Ksgn(S) + 70 + B@, @)S)

-~ . 2 A
+ F 6w S a- o)X —o) ¢,
i=1
= S B(@, q')S + 1 - gzs - O‘AISgn(S) - Ksgn(S))

-~ K ee e 2 p
+ 6 I 6+Y' @ dm @S + 3 0~ o)~ 6/ ¢, (19)
i=1
Note that 6 = § , since the unknown parameters 6 are
constant. Substituting the adaptation laws (10)-(12) into (19)
and arranging the function, equation (19) can be representd as

V) = ST(B@ @S + 74 - Ksgn(®) - ( o liSll + o,lISI) (20)
Note that || zq I < oi+ o,liS|. The resulting expression of

V(t) is
V@) = S'(B(g, 9)S - Ksgn(S)) Q1)

If K can be chosen to make V{t) be a negative-semi
definite function of S which vanishes only at S=0, so, by
means of Lyapunov’s theory, the sliding surface S=0 are
asymptotiggﬂy attractive. This can be achieved by supposing
that there exist known functions fj;, such that

| By(@, 9 | < i@, @ : 22)

which can be always be satisfied by choosing a suitable
function, and selecting K of (21) as

n
k=2fi(aa!| s;| +2, ,i=l,...,n (23
=1
where 7,50 is an arbitary constant{12]. We obtain
. ,
V() = - 29dsd <0 ' 24)
: i=1

From (13) and (24), it is well-known that S approaches zero
asymptotically. This in turn shows that the tracking errors
converge to the sliding surface $=0. Thus the resulting
adaptive sliding mode control law is globally asymptotically
stable and guarantees zero tracking errors. [ ]

Remark 3. The result of proof is the same as [12], while the
scheme and the approach to the overall control of
manipulators are different from those in [12]. These
differences between the adaptive sliding mode controller in
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[12] and the one presented in this paper are: 1) The adaptive
sliding mode algorithm in [12] is based on the equivalent
control method which consists of a low frequency component
and a high frequency component. The design method
presented in this paper is based on the model reference
adaptive system technique. 2) In [12] the disturbances arising
from the actuator or some other causes are neglected in the
control design, while in this paper they are explicitly
considered.

IV. Elimination of chattering

The control laws given above are discontinuous and it is

" well known that synthesis of such control laws give rise to

chattering of trajectories about the surface S=0. Chattering is
undesirable in pratice because it involves high control activity
and further may excite high frequency dynz{mics neglected in
the course of modeling(such as unmodelled structural modes,
neglected time delays, and the like). This problem can be
eliminated by smoothing out the discontinuous control law in
the neighborhood of the sliding surface, as suggested by
Slotine and Sastry[2]. To do this, we replace signim
nonlinearity by a saturation nonlinearity, which is defined as

1 if S/é=>1
sat(S) = Sl if -1< S/¢ <1
-1 if S/¢<—1

where ¢ is the boundary layer thickness[14]. With this

boundary layer, the adaptive sliding mode control law, for
example, given by (9) - (12), becomes

(® = Y ¢ Gms .q.m)g - 32 Sy - oAlsat(S) - Ksat(S) (25)

é\=_FYT(q5 (ia (.lma qm) Sy . . (26)
A
o1= &l S¢|| (27)
G2= &oll Sl @9)
n
ki=2fi(a.d| sgl + 7, i=1, =, n 29
j=1
where S¢= ( Sl S¢n)T with S¢i— §;— ¢,‘Sﬂt( Si/ ¢z) is

a measurement of the algebraic distance of the current state
to the boundary layer. We can again demonstrate the
attractiveness of the boundary layer by using the following
Lyapunov function

2
VO = % S,M@ S, + %6 I 6+ %3 o 6% £, (30)

i=1

instead of (13), and noting that S‘¢= S outside the boundary
layer, while S, = O inside the boundary layer, which yields

V@) = - Dadsg <0 31)
i=1

Definition (30). implies that V() = O inside the boundary
layer, which shows that (31) is valid everywhere and further
guarantees that trajectories eventually converge to the
boundary layer. Thus it can be shown that closed-loop system
is globally uniformly ultimately bounded[11].

V. Simulation

A computer simulation is performed to evaluate the
performance of control algorithm. Consider the two-link
planar manipulator as shown in Fig.1, carrying a load of
unknown mass[12].

Fig. 1. Two-link manipulator model.

The dynamics of the manipulator with payload can be
written as

Mn M i | .| Breg -Bul@ +'q) q
Mo Mo 42 B2 qn 0 G2
G T
+ =
B G2 7y
where
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2 2
M = (m; + mo)r; + mprs + 2moriracos(qz),

) 1.5
Mz = mor; + morircos(qz), 5
M = My, s ]
M = mor’s, § ]
Biz = morirssin(qz), o
G = (m + my)rigeos(qz) + marzgeos(qi+qa), S 0S5k T
G2 = mongcos(qi+qy), £
= 0
< 5
and g is the acceleration of gravity. The parameter values g
used are seleted as .05 . .
0 2 4 ’ 6

m; = 0.5kg, m; = O.Skg? r, = lm, r, = 0.8m time(sec)

Let the equivalent barameter vector § be (b)Tracking error of joint 2

e = (m + m)r’y, 5= m2r2_2 and y = monr Fig. 2. The tracking errors in Example 1. -

Thus the true values of unknown parameters are a =1, 4
= 032 and = 04. The corresponding initial parameter 1.5
estimates are selected as o = 0.72, ,§ = 0.25 andl} = 0.32.
The constant parameters are chosen as C=4I, 5=0.051,
Kv=101, Kp=251, 5,= 7,= 2.0, and ¢,= ¢,=0.5, and

01= 03=0.5. The entries of the matrix B(q, 'q) can be
upper -bounded ‘

state 1 error{rad)

b | < 9l < slgal = £

bz | < sldi + gl < sldi + @l = fn 0 2 4 . 6
. .. ' time(sec
[ b | < olql < 7@l = fa )s (f..} |
a) State error of joint
[ b | =0=1y ( !
0.5
and we select 7 = 1. —_
Example 1. The desired joint trajectories are chosen to be g ol .
a® = 0, qu(t) =0 S
and the initial position of qi(t) is 60° and qu(t) is -60°. The o 05F :
boundary layer thickness is chosen to be ¢,=0.5d; and )
¢,=0.5d;. The selection of di depends on the strength of I -1 .
w
0.5 15 . .
E 0 2 4 6 -
“g o)) 8 time{sec)
= (b) State error of joint 2
— 05}l
= Fig. 3. The state errors in Example 1.
X .
© - the discontinuities of control efforts. We choose d; = 1 and
= d> = 1 for this simulation. Figure 2 shows the tracking errors
-1.5 0 2 4 5 between the desired trajectory and manipulator angular

position. Figure 3 shows the state errors between the
reference model and manipulator angular position. Fugure 4
(a) Tracking error of joint 1 shows the values of s; and s; as functions of time. Figure 5

time(sec)
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and figure 6 are the results of the parameter estimates and the
torques exerted at manipulator joints respectively.

As we expected the tracking errors converge to zero.
However, it is obvious in Fig. 5 that the parameter estimates
do not converge to the true value. It should be noted that the
stability only guarantees the output error to converge to zero,
and that it does not guarantee nor require the parameter error
to converge to zero.

8
e 4
I
> 2}
[@)]
[
T ol
®

-2

0 2 4 6
time(sec)
(a) S; Versus time

2
™~
Y :
&
a -2 .
()]
-
o _4B{ |
w

-6 .

0 2 4 6

time(sec)

(b) S, versus time

Fig. 4. The sliding surfaces as function of time in Example 1.

0.9

0.8 ]

0.7}

0.6t

" parameter estimates

0.5

0 2 4 6
time(sec)

(a) Parameter estimate value «

0.7
S
® 0.6} -
E
o 05 -
[£b)
= 0.4 -
E
& 03 .
©
a
0.2
0 2 4 6
time(sec)
(b) Parameter estimate value g
0.5
w
2
®©
£
>
©
>
®
=
o
®©
a

2 4 )
time(sec)

(c) Parameter estimate value ¢
Fig. 5. The Parameter estimates of ¢, 3, and y in Example 1.

Example 2. The parameter error converges to zero when the
input signal is sufficiently rich in its frequency content[17].
To see this relationship, the desired joint trajectories are
chosen to be

qa®) = -90° - 52.5°1 - cos(1.26t))
qa(t) = 170° - 60°(1 - cos(1.26t))
40
20t
@
s Of
S
=20
40 : s
0 2. 4 8

time(sec)

Ea) Torque 1
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torque 2

10 , ;
5 ]
0 ]
-5 -
-10 ‘ i
15 N '
0 2

4 6 -
time(sec)

(b) Torque 2

Fig. 6. The Control torques in Example 1.

0.5
=)
© .
- 0t
o
o o
~ 0.5}
[s)]
=
s |
&
=15
0 5 10
time(sec)

(a) Tracking error of joint 1

tracking 2 error{rad}

0 5 ' 10
time{sec)
(b) Tracking error of joint 2

Fig. 7. The tracking errors in Example 2.

and the initial position of qu(t) is -30° and qu(t) is 140°.

In this case, all the conditions are the same as Example 1.
Figure 7 - 11 are respectively the simulation results of
tracking errors, state errors, sliding surfaces, parameter
" estimates, and torques. From the simulation results, we see

that the tracking errors are- converge to zero and the
parameters estimates are converge to near the true values
after an initial adaptation process. On the other hand, figure
8 shows state errors of 0.045rad, 0.034rad for q; and qo.
These state errors may be reduced by reconstructing a
suitable reference model instead of a simple double integrator

used in this papaer.

1.5

o)

=

g 1 4
@

o 05t

©

o

0 r
0 5 10
time(sec)
(a) State error of joint 1
0.2

)
B ]
g.

o 1
™~

[4b]
© |
)

5 10
time(sec)
(b) State error of joint 2

Fig. 8. The state etrors in Example 2.

sliding surface 1

"0 5 10
time(sec}

(a) S; Versus time
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1 -
(o]
S 0 1
RS
> -1 i
{s]
[y
T ol |
»

-3

0 5 10

time(sec)

(b) S, versus time

Fig. 9. The sliding surfaces as function of time in Example 2.

V1. Conclusion

In this paper, a robust adaptive sliding mode control
scheme for accurate tracking of robot manipulators is derived
making use of the fundamental properties of the manipulator
equations, with unknown manipulator and payload parameters
being estimated on-line. Unlike usual adaptive sliding mode
control algorithms, the proposed controller is developed based

1

0.9F

parameter estimates

0 5 10
time(sec)
(a) Parameter estimate value a

0.4 .

03l ' 1

parameter estimates

0.2

0 5 10
time(sec)
(b) Parameter estimate value 4

0.4

0.2

0.1

parameter estimates

-0.1

0 5 10
time(sec)

(c) Parameter estimate value ¢y

Fig. 10. The Parameter estimates of @, 8, and y in Example 2.

10
- 0
ab)
3
b=
2 10
-20 ;
0 5 10
time(sec)
(a) Torque 1
1
o~ 0 .
2|
c
2 5 .
-10 .
0 5 10
time(sec)
(b) Torque 2

Fig. 11. The Control torques in Example 2.

on the model reference adaptive systems technique. From
simulation results, despite the existence of the parameter
uncertainties and the disturbances arising from the actuator or
some other causes, we see that the proposed controller is
globally asymptotically stable and guarantees zero tracking
errors. In addition, although it may not be necessary to have
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two frequency components for the desired trajectory to be
persistently exciting, simulations show that sufficiently rich
desired trajectories yield convergence of the parameter
estimation. Ongoing research will be on extending the
algorithm to combine the learning control scheme.
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