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Derivation of a Group of Lyapunov Functions
reflecting Damping Elfects and its Application
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Abstract

Stability analysis of nonlinear systems is mostly based on the Lyapunov stability theory. The well-known Lyapunov function
method provides precise and rigorous theoretical backgrounds. However, the conventional approach to direct stability analysis
has been performed without taking account of damping effects, which is pointed as a minor but crucial drawback. For accurate
stability analysis of nonlinear systems, it is required to take the damping effects into account. This paper presents a new method
to derive a group of Lyapunov functions to reflect the damping effects by considering the integral relationships of the system
governing equations. A systematical approach is developed to convert a part of damping loss into some appropriate system
energy terms. Examples show that the proposed method remarkably improves the estimation of the region of attraction compared
considering damping effects. The proposed method can be utilized as a useful tool to determine the region of attraction.

[. Introduction

In the operation of nonlinear systems, the stability

problem is the first issue to be solved. Many authors

contributed to developing the nonlinear stability theory,
yielding the Popov theorem and the ultimate confinement
theorem for Lure-Type nonlinear systems[1,2,3].

Most of the theorems on nonlinear system stability is
based on the most well-known Lyapunov function method,
which provides precise and rigorous theoretical backgrounds
[3,4,6,7]. This method has a great merit that it is possible to
tell the future system stability by only the present state.
However, the application of this method has been limited
since there is no general method to find appropriate
Lyapunov functions. One of the popular methods to find a
Lyapunov function is using the energy function of the
system. Most of the non-linear systems have no global
Lyapunov function, and thus local Lyapunov functions are
generally used to determine a local stability around a certain
singular solution in concern. In this case, system damping
should be considered as an important factor to determine the
accurate local stability. There have been just a few attempts
to reflect the damping effects into the Lyapunov function by
using the Popov criterion approach [2,8,10,11,12]. In most
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cases, searching for a damping included Lyapunov function
requires an extremely difficult task[8,11].

This paper presents a new simple method to derive a
group of Lyapunov functions to reflect the damping effects
by considering the integral relationships of the system
governing equations. A new type of energy function is
derived for the simple RLC circuit, which well reflects the
damping effects into the energy function. The proposed
method is applied to the one-machine power system to show
its validity. The results are discussed with the comparison of
those by the approach using Popov theorem[l, 2].

I1. Local Stability Analysis by Using
Energy Functions

Given a nonlinear system, it is relatively easy to find an
energy function E, which satisfy %so for all the time.
Assume that we are concerned with the system stability
around a certain equilibrium solution X°. The local stability
around X° can be determined by the following Lemma,

which is only a sufficient condition.

Lemma : Assume that there exists a well-defined energy
function E(X) for the system concerned. If there is a convex
region R, around Xx° and the energy function E(X) is
convex in R,, then the system is locally stable around Xx°,
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and the region R, is a subset of the region of attraction.
L]

The above Lemma can be widely applied to local stability
analysis of nonlinear systems if some appropriate energy
function is provided. Most of the conventional studies have
adopted the dynamic energy function which is given by the
sum of kinetic and potential energies, and the system losses
ecrease the system energy with %s 0. The Lyapunov
theorem provides a sufficient condition. Therefore, there is
some possibility to find a wider stable region by taking the
system damping into account.

In this study, it will be shown that a group of local
Lyapunov function can be derived to reflect the damping
effects by considering the integral relationship of the system
governing equations.

ITI. Derivation of a Group of Lyapunov
Functions by Considering System Losses

There is no other thumb rule to find a Lyapunov function .

than investigating case-by-case. The most popular method to
find a Lyapunov function is taking the energy function as a
Lyapunov function. This study deals with how to derive a
group of energy-related Lyapunov functions by considering
system losses with the following sample R-L-C system.

i R L
Ww
+
c v

Fig. 1. RLC Circuit

The state equation for the above system is given by

1

v=—i

c (1.a)
i= —Bi——l—v
T L L (L.b)

The energy function for this system is given by
Lyl |
) E=Lit+% Cv @
Then, it can be easily shown that the time derivative energy
function is given by

aE _

i R? &)
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This energy function can be taken as a Lyapunov function.
However, the energy function E in Eq. (2) does not reflect
the system loss Ri®. We can derive some other type of
Lyapunov function by using integral relations of the system
equation. ‘

Equation (1.b) can be rewritten as follows:

Li=-Ri-v @

By multiplying i to both sides of the above equation, we
get
Li*=—Rii—vi
= —Rii —vCi 3
(where ;= Cp from Eq.(l.a) is used)

Integrating both sides of the above equation gives

22 _ 1 %3 .
Lfi di=——Ri - C|[vidt ©

By using Eq. (1.a), the last term of Eq. (6) can be rewritten
as

. . . 1 . 1.
vadt=vv—fv2dt =Ev1—-é—2jzzdt )

By substituting Eq.(7) in Eq.(6) and rearranging, we can
obtain

B . 2
Ji dt_ERcm Cvi+ LC[idt ®

For the given system, we have the following energy
conservation equation.

Lreelon +[Ri*dt=K
27 2

®
where K is constant
The substitution of Eq.(8) into Eq.(9) yields
%(L+R2C)i2 +CRvi+%Cv2 +LCRJi'2dt= K (10)
If the system parameters satisfy the following condition
D=(CRY —(L+R2C)C<O (11)
we can get another Lyapunov function as follows:
E = %(L+ RO+ CRw'+% v 12)

Here, it is noted that inequality (11) is the necessary
condition to ensure the convexity of function Ei. The

time-derivative of £ can be given by
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dE, _ 2
— - =-LCRi a3)
This relation can be easily proven either by the chain rule
or by differentiating the transformed energy conservation
rule in Eq.(10). When using the method of the latter, it is
required to substitute Eq.(12) into (10) before differentiating.
By examining Eqgs.(12) -and (13), we can see that a new
energy function E; can be another type of energy-related
Lyapunov function if the system parameters satisfy the
condition (11).
~ On the other hand, we can derive a group of energy
functions by splitting the damping terms. Eq.(9) can be
rewritten as follows :

1,. 1 . ,
Ele+5Cv2+7»IR12dt+(1—k)JR12dt= 19)

~with 0<A<L1

By replacing the first damping-related term by Eq.(8) and

rearranging it, we can obtain the following equation.
%(L+ AR’C)? + ACRvi+ —;—Cvz
+{pLeri? +a-MRi =K ' @5)

The above equation can be called as variants of the energy

conservation law in Eq.(9) with all A€ [0.1],
By examining Eq.(15), we can obtain a group of Lyapunov
functions as follows :

N | 2 )2 N A
LG,v)= 2(L+7»R C)? +ACRvi + SCv 16)
with all A€[0,1] which satisfies =

D=(CRYN -(L+ARC)
=C’R*N - R*C*A - LC <0 an

However, it is obvious that any A€ [0,1] satisfies inequality
(17), which has the following solution range :

%—%,/l+L/(RZC)<7\.<%+%,/1+L/(R2C) 77
The time derivative of Lyapunov function L, is given by

4 Li(i, 1) == ALCR# — (1~ DRP<Q (18)

Condition (17) guarantees that L ,(iv) is a convex function,
and Eq.(18) shows the seminegativeness of the time
derivative of the Lyapunov function.

The above typical example shows that we can derive a
group of global Lyapunov function for a simple RLC circuit.
This method can be applied to harmonic oscillator problems

such as pendulum oscillators and swing equations of power
system with constant damping. ‘

IV. Illustrative Example

Consider a one-machine infinite bus system with a pure
reactive line as shown in Fig.2. We assume that the system
rests at an equilibrium point for all time £<0.

E/6 . | P40

[ /VVV\ Infinite Bus

M : Generator inertia
D : Generator damping coefficient

Fig. 2. One-machine infinite-bus electric povs)er ‘system

The swing‘equation of the above system is gi.vén by
=0 . L © (19.9)
. E.Vsin & - :
Mo+ Do=P, - ——2
oree (19.b)

o

with 8()=90,, 0o(t)=0 for all t<0
where M Generator Inertia

D : Generator Damping Coefficient
P, : Mechanical Input Power [MW]

For stability analysis of the system, the mechanical input
P is considered to be constant, and the generator internal
voltage E; is also assumed to be well governed to be
constant. Under these assumptlons the conventional system
energy is given by

1 2, EsV{(cos §, — cos §)

E=—Mo®+ -P(6-3)
2 X :

@0

t

where & is a singular solution of the swing equations,
ie. :

XP ) | | (21)j

= ain ~1
Bsfsm (ESV_

The time derivative of the energy function E is given by

dE _

at
By integrating Eq.(22) in the time interval [0, t] and
equating it with Eq.(20), we can derive the following energy
conservation law :

Dw2 22)
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%Mcoz 4 EV(cosd=cosd) _p 5 5 )+ [ Dotdi = E,

X, 23

with E; =E(0) : Initial energy of the system

The energy function E has an energy well around the
singular solution as shown in Fig. 3.

N

==

\W‘”““l
P

L M%;'\”}/ \®

@ stable region

Fig. 3. Energy well of function E

The energy function E directly gives the stable region S
shadowed in Fig.3. However, energy function E does not
reflect the damping effects. When the damping coefficient is
significantly large, the stable region should be extended.

Derivation of a Energy Function to reflect Damping

Effects ,

In order to reflect the damping effects, it is necessary to
change the damping-related term in the energy conservation
law (23) into an appropriate form including a path
independent energy term. This can be done by using integral
relationships derived from system governing equations (19.a)
and (19.b). Here, we can derive an integral relation from
Eq.(19.b). First multiplying both sides of Eq.(19.b) by Ad
and integrating with respect to time t, we obtain

| M@ASdt + [ DoASdt = [ (P, - P,)ASd! (24.9)

where A8=8-3, 4.h)

In the above equation, the angular velocity w can be
represented as follows:

o= _dAs
dt  dt 25)

Substitution of Eq.(25) in Eq.(24.a) gives

[ MASASdt + | DASASA! = [ (P, — P)ASd! (26.2)
EVsin §
where P,= —)—(:‘— (26.b)

Here, the first term in Eq.(26.a) can be rewritten as follows:

| MABASd: = MASAS‘t— |, MAS*dt
0 0 0
= t o?
= MoAS- M [ odt @7

Since the second term of Eq.(26.a) can be directly integrated,
the substitution of Eq.(27) into Eq.(26.a) gives.

MoAS-M |, mzdt-%DA82= [ (P, - P, )\8dr
From the above equation, we can obtain the following
integral relationship:

2, 1D, ., 1 _
‘[010) dt—OJAS‘l—Z“ﬁAS WJ:)‘(P”‘ Pe)ASdt 28)

By using this relationship and splitting the damping loss
term in a similar way as given in Eq.(14), we can derive a
group of energy functions from Eq:.(23) as follows :

E, (0,8)= %M(oz  E:V(cos 8, —c0s8), a5
1D*, o,
-I—Z—AZMS -P,(3-8,) 29)
with 0<A<I
The time-derivative of £y is given by

dE, 2 A

e = (P, - P NS <

. (1-A)Dw o (P,-PW3<0 (30)

for §,<8<39,
In the above equation, the inequality can be derived by using
the fact that the stable equilibrium point O; is determined
by the power curve in Fig.4 which shows that

(P,-P)AS<0 for §,<8<8,

Equation (30) says that the energy function E,; meets the
seminegativeness of its time derivative for all A €[0,1]
unless the system goes into the explicit unstable regions,

$>8, or 5<3,,

' X,
PI
Ly i i
! ! !

S S 3,

If ,<8<9d,, thenP,—P <0
If6,<8<8. thenP —P >0
Fig. 4. Power Curve
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Now, we will examine the local convexness of the energy
function E,; around the stable equilibrium solution. £, can
be approximated around =55 as follows:

1 V sin & 1 EsV cos 8

E,=—M®’+ Es £ A+
2 X 2 .

'

s AS*+DAD AS

t

+%D—AA82 —-P, A8

=%Mm2+DM) A+l (E—K;"S—5+2 X]ABZ 31

.In second step of the above equation, the following
relationship is used,

P = EVsind,
X, (32)

In Eq. (31), E, can be convex around X,

EsV cos §, D—k)<0

2_
(DW=M (= 33)

This inequality has the following solution rangé :

2

1 (1 )z ME;cos 8 1 + (l)z ME;cos ds
2

oix, Mtz DX, 34)

Since | 8 o | should be less than 7 /2, any A €[0,1] always

satisfies inequality (34). As a result, it can be concluded

that, for any A €[0,1], energy function E; can be used as
a local Lyapunov function.

Comparison with Popov stability criterion

The Popov criterion analysis provides a systematic
approach to generating Lyapunov functions which are similar
to those derived in this paper[l, 2]. It is interesting to
compare the results of two approaches. Hill and Bergen
developed a general damping-included Lyapunov function

with free parameters p and q satisfying qz%%( i=1,2,---,m)

for multimachine system[2]. By setting p=1, their gene-
ralized energy function for the one-machine infinite-bus
system can be reduced to

V(8,03,8S)=%D(8—8:)2+Mm(8——85)+%qM(o2
i Elenfamcsd) _p (55 @5)
with qz%

The above energy function is just the same as given in

Eq.(29) in this paper when q is substituted by q>% and

dividing V(& ,w,ds) by q is taken. The approach by the
Popov criterion is too complicate to make out the physical

meanings of the terms included in the energy function.
However, the proposed approach is based on the precise
transform of energy function by using the integral
relationship of the system governing equation. Therefore, the
proposed approach can provide a new idea to develop an
appropriate Lyapunov function. It is also noted that the
proposed energy function can be generalized for the
application to multimachine systems. Multimachine systems
have the following energy conservation law:

LA gt

Z%M@HZZVV B, (cos 8} —cos 3,)

+Y | D&'dt=consant
Z"[ o (36)
A portion of the damping loss in each generator can be
transformed into the potential energy representation by using
Eq.(28). Then, the damping included energy function can be
given by

E\(0,8) = Z%M@f +ZZV‘VJ'B'7 (cos 8; —cos §,)
. g

1 D}
+ Z, I:D,,X,.OJ,AS, + EM_IX'AS' il Z P (8 (37)

The above energy function has the following time derivative

dE,

at =2|:‘ (I—A’i)Dia)iz +%(Pmi _Pei)Asi]

38)

with 0SA, <1 =1-,m)

Here, we see that the proposed approach is obviously
applicable to multimachine systems just as the Popov
criterion approach. However it requires much carefulness to
keep the seminegativeness of the energy function time
derivative, which remains for the further study.

Estimation of the region of Attraction

By selecting an appropriate A, we can establish a local .
Lyapunov function E,, and can easily find a stable region
S, associated with E,;. Then, an estimate of the region of
attraction for the system is given by

A

St ng 39)
With the changes of A, the stable region S, also
continuously varies. Figure 5 shows the variation of the
stable region the changes of A. The region of attraction can
be estimated by the shadowed area, and the dark area is the
stable region determined by the conventional energy function.
with the no account of the damping effect. This illustrates
that the proposed method can be an effective means to take
into account the damping effect in stability analysis. Here it
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is noted that the region S is a subset of the actual region of
attraction. There is high possibility that the system may have
some attraction region outside of the region §,<6<6,,
where &, is an another equilibrium point located in the left
side of the stable equilibrium point. However, we have little
concern with the stability in those region since the system
seldom goes beyond the region §,,<é<¢, in Fig. 5.

Contour of Energy Function (Damping : 0.3)

60+

.40k

20t

omega axis
o

-20F

_40f

-B60F

delta axis

X 00 =[3.7933,-20.1337 ]

Fig. 5. Stable region S, with the change of A

Numerical Results
Numerical analysis has been carried out for the system in
Fig. 2 with the following parameters :

H=4.0 rated frequency fo = 60Hz
X'=0.28 Pn=1.00pu
E=1.211 M=H/zfo = 0.0212

The damping coefficient D can be varied with the generator
design, mainly depending on the damping winding. In this
study, we have analyzed the system stability by using
various damping coefficients, and the results are summarized
for the typical cases.

i) In case of D=0.3 [pu}

In this case, we have observed the behavior of the
damping-reflected energy function E; with the parameter A
changing from O to 1 by the step of 0.1. The saddle point
of E,, say Xu,, can be calculated from the following
equations :

0E, _
a%’” =Mw+DA 46 =0 :

i _ EVsiné D _p _
EF _—Xt +D/'lw+—M A48 —P,=0

The equipotentials of E  (Xy,) is shown in Fig. 5. In this
case, the stable region S; determined by E; varies without
much expansion of the stable region as parameter A

increases. The region of attraction should be determined by
taking the union of S,'s for all A €[0,1] as mentioned
before. The shaded region in the upper half plane is indeed
a stable region, where all states move right and cannot pass
away any equipotential line. Therefore, all states must
eventually be captured by the dark region which is an
ultimate confinement region. The shaded region in the lower
half plane is also stable region since all states in the region
@ <0 moves left and cannot pass away any equipotential
line. Therefore, all states in the shaded region of the lower
half plane enter into the dark region or the upper shaded
region, which guarantees the stability of the region.

ii) In case of D=0.4 [pu]

In this case, we also tried to apply the same procedure as
the above case. However, we have got some troubles in
determining the stable region with the use of the
equipotentials of E;(Xu,). The equipotentials of E ;(Xu3;)
are obtained with the manner used in the former case and
they are shown with the dot lines in Fig. 6. The dot line for
A=0.2 includes the region where § > &, and @ >0, in
which the seminegativeness of dE/dt is not guaranteed and
the system state moves to right side away from the stable
region. The stable region should be determined so that there
is no possibility that the system state may enter such a
region. In order to achieve this purpose, this study adopts the
equipotential of E ;( 8 ,0) than E (X, ,), when the unstable
equilibrium point ( § ,,0) is encircled by the equipotential of
E (X.,). The equipotentials of E (8 ,,0) are shown with
solid lines with A changing from O to 1.0 by the step of
0.1. The shaded region in Fig. 6 is a stable region in the
same reason as mentioned in the former case. It is also
interesting to consider the stability of the striped region. In
this region, all states must move to the left but may pass
away the equipotential lines since dE/dt may be positive.
However, we conjecture that this region would be a stable
region with high possibility. The proof is remained for the
further study.

Contour of Energy Function (Damping : 0.4)
100 T T T T T T T

50t

omega axis
O

504

¢
' delta axis
Fig. 6. An estimate of attraction region in Case of D=0.4
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iii) In cases of D=0.5 and D=1.0

In these cases, the damping coefficients are large enough
to make the placement of equipotential lines of E;( & 4,0)
quite simple. The equipotential lines and the region of
attractions are shown in Fig. 7.(a) (b). In these graphs, it can
be easily observed that the large systern damping rapidly
expands the stable region S; determined by E, with the
increase of A, so that S, associated with larger A covers
that associated with less A. Therefore, the region of
attraction can be determined directly from the equipotential
of E,(8.,0) associated with A=1 for the generators in
common use. The region of attractions for the two cases are
presented with the shaded area. It is noted that the proposed
energy function E, yields the remarkably expanded stable
region compared with that by the conventional energy
function.

Contour of Energy Function (Damping: 05)
100 T — T

50t

omega axis
o

50t

-100

delta axis

Fig. 7(a). An estimate of attraction region
in Case of D=0.5

Contour of Energy Function (Damping: 1)
v T T

100

80t
60
401
20r

omega axis
=1

=204

404

-60F
-80f

-100,

delta axis

Fig. 7(b). An estimate of attraction region
in Case of D=1.0

V. Conclusions

This paper presents a new method to derive a group of
energy-related Lyapunov functions to reflect the damping
effects by considering the system governing equations. For

“ stability analysis of nonlinear systems, the local stability has

been discussed in order to reflect damping effects. A
systematic approach has been developed to convert some
part of the damping loss into some appropriate system
energy terms by using the integral relationship of the system
equation. An illustrative example has shown that the
proposed method can be well applied to harmonic oscillator
problems. By using the Lyapunov function reflecting
damping effects, a precise method is presented to determine
the region of attraction. The proposed method remarkably
improves the accuracy of stability analysis by the direct

" method.
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