JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 3, NO. 3, 1998 373

Tracking Filter Design for a Maneuveri Ing Target
Using Jump Processes

Sang Seck Lim

Abstract

This paper presents a maneuvering target model with the maneuver dynamics modeled as a jump process of Poisson-type.
The jump process represents the deterministic maneuver(or pilot commands) and is described by a stochastic differential equation
driven by a Poisson process taking values from a set of discrete states. Employing the new maneuver model along with the
noisy observations described by linear difference equations, the author has developed a new linear, recursive, unbiased minimum
variance filter, which is structurally simple, computationally efficient, and hence real-time implementable. Furthermore, the
proposed filter does not involve a computationally burdensome technique to compute the filter gains and corresponding
covariance matrices and still be able to track effectively a fast maneuvering target. The performance of the proposed filter is
assessed through the numerical results generated from the Monte-Carlo simulation.

I. Imtroduction

The Kalman filter has been accepted as one of the best
methods for providing the estimate of the state of a moving
target([1]-[4]). Although developed specifically for linear
models, the Kalmen filter has found wide applications in the
form of suboptimal filters for nonlinear models through
linearization techniques. Since Singer[5] first published his
paper on ftracking manned-maneuvering target in 1970,
considerable attention has been given in the literature[5]-[20]
to the tracking of such targets using suboptimal Kalman
filters.

As pointed out by McAulay and Denlinger[6], the basic
problem posed by a maneuvering target is a mismatch
existing between the modeled and the actual target dynamics.
In this regards, a number of different approaches have been
applied to the maneuvering target problem, ranging from the
parametric description of the maneuver (i.e. white noise to
colored noise and to a semi-Markov process) to the
non-parametric model of the maneuver (i.e. modeled as an
unknown input acceleration).

Thorp[7] suggested a binary random variable in the target
equation and developed an estimator given by a weighted
sum of two Kalman filter estimates with the weights
depending on the likelihood ratio for the detection of a
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maneuver. However, this results in degradation in per-
formance during non-maneuvering conditions. It also makes
the estimator very prone to divergence, particularly if
nonlinear equations have been approximated by a Taylor

* series. In the variable dimension(VD) algorithm proposed by

Bar-Shalom and Birmiwal[9], the tracking filter operates in
its normal mode in the absence of any maneuver and once a
maneuver is detected the filter uses a different state model.
The VD algorithm is simple, but can not be applied in
real-time and has undesirable features of re-initialization as
pointed out by Bogler[10]. Blom et al.[11] and Bar-Shalom et
al.[12] proposed the interacting-multiple model algorithm,
which consists of running a filter for each model, a model
probability evaluator, and an estimate combiner at the output
of the bank of filters. Each filter uses a mixed estimate at the
beginning of each cycle.

Singer{S] modeled the target acceleration as a random
process with known exponential autocorrelation. Though the
resulting filter is capable of tracking target maneuvers, the
quality of the estimate is degraded when a target is moving
at a constant speed. McAulay and Denlinger[6] performed a
hypothesis test for maneuver detection. They also proposed
the use of rectilinear motion model and switching from one
model to another and re-initializing at each turn.

Chan et al.[15] proposed an input estimation(IE) technique
to compensate for a deterministic target maneuver. The
maneuvering target input parameters, i.e. magnitude of the
maneuver, are estimated in a mean square error ‘sense to
remove the filter bias caused by the target deviating from the
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assumed constant velocity (straight line) course. Though this
scheme does not assume any a priori knowledge of the
maneuver, the detection scheme requires a significant amount
of computation and memory, while assuming the maneuver is
constant over the detection window. The IE algorithm is
further developed by Bogler[10] for the case of a one-
dimensional Kalman filter, thus reducing the computational
burdens. By utilizing the alternate structure of the information
type Kalman filter, Farooq et al.[17] further developed the
~concepts of Chan et al.[15] and obtained a decoupled (thus
~ computationally more efficient) filter based on the analysis of
correlation coefficients.

Moose et al.[16] and Gholson et al.[18] proposed a
maneuver model based on a semi-Markov transition between
states of time-invariant set of discrete values representing the
maneuver commands. By incorporating the semi-Markovian
concept into a Bayesian estimation scheme, an adaptive state
estimator was developed. A somewhat similar method was
proposed by Richer and Williams]{19]. The approach by
Moose et al.[16] has been proved successful in tracking a
maneuvering submarine. However, the main drawback of the
method is in its incapability of tracking fast maneuvering
targets, such as aircraft, beyond a few transitions because of
the enormous computational requirements[10]. Using the
same - target model as Moose, Demirbas[20] proposed a
different approach that estimates the states by quantization,
multiple hypotheses testing and a suboptimal decoding

algorithm without linearizing the nonlinear observations.

Abrupt changes in the Loran-C and Omega measurements
arising from the marine integrated navigation system were
modeled as a pure jump process of Poisson type by Ahmed
and Lim[21] and Dabbous et al.[22].

“ Conventionally the target dynamics is modeled as a
continuous random variable, statistically described by known
and constant parameters, for example, the Singer model[5].
Provided this underlying target model is correct, then the
Kalman filter yields optimum estimates. If the target initiates
and sustains a sudden pilot-induced maneuver, then this
underlying target model is no longer valid, because there is
essentially a step discontinuity which is modeled as an input
acceleration term. Unless this discontinuity is taken into
consideration, the filter will accumulate errors and possibly
lose the track. In this paper, keeping this problem of
discontinuities in view, we propose a maneuvering target
model with the maneuvers modeled as the jump process of
Poisson typé. The jump process represents the deterministic
maneuver(or pilot commands) and is described by a stochastic
differential equation driven by a Poisson process taking
values from a set of discrete states. With the help of the new
maneuver model based on the jump process, along with the
observations which are described by a linear difference
equation and driven by a sequence of white Gaussian noise,
we propose a new recursive, unbiased minimum variance

filter. The main contribution of the paper is the development
of such an efficient filter for tracking a fast maneuvering

* target by employing the jump processes for pilot commands.

This filter is structurally simple so that it does not require a
time-consuming complex procedure to compute the filter gain
or covariance matrices. The proposed filter is also com-
putationally efficient so that it is real-time implementable.
Futhermore, it is able to track effectively a fast maneuvering
target.

The paper is organized as follows. In Section 2, a new
target model using a jump process for the deterministic pilot
command is presented. Based upon the target and observation
models, an optimal (in the minimum variance sense), linear,
recursive and discrete filter is developed in Section 3. In
Section 4, the performance of the proposed filter is
demonstrated through the Monte Carlo simulation. Finally the
concluding remarks are presented in Section 5.

I1. System Model

In this section a system model for a maneuvering target is
proposed and a discrete measurement model is presented.

1. Target Model

Let w,(%), w,(H and w,(# denote the components of a
zero mean white Gaussian noise vector w(#), and u,(?),
u(D and u,(f) denote the components of a known
deterministic pilot command vector u(f) at time ¢ in x, y, 2z
directions respectively. Then the dynamics of maneuvering
target with reference to cartesian coordinates can be
characterized by the following differential équation:

D =—ax()+wD+uld,. @
Y =—ay(D+w,(D+uld, ©

D=—azD+w(D+uld, @)

3y, -
2y, 4
YA

TN
-2y,

t(sec)

Fig. 1. The Pilot commands «(#).
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where o is the viscous drag coefficient, and the overdot(and
double overdots) denotes the first(and second) derivatives
with respect to time ¢. The pilot(maneuver) commands u(f)
are modeled as jump Markov processes with (2a+1) discrete
states. The behavior of the process u,(f,i=x,y,2, may be
graphically represented by Fig. 1.

In Fig.1, 7, is a known positive parameter representing the
size of jump between the two neighboring states, which
corresponds to the mount of acceleration increment by the
pilot and could be in general time-varying. However, without
any lose of generality, we assume that it is time-invariant in
- the rest of the paper. Therefore, the process u(# is the
solution of the following stochastic differential equation:

dui( t) = 71'{1 [u,-(t,)=—nr,-]1vil.2(dt) -1 [u,-(t,)=+nn]N‘iZn-f-l,Zn(dt)
+ gzl [u.-(t_)=<;'—n—lm(N}.fﬂ(dL‘)—N’}.f—l(dt))}, @
for i==x,y,2,
where 1 ; is a characteristic function defined by

= [ 1 if [..] 4 true,
leg = { 0 otherwise, ®)

and Ny, N, 7=1,2,..,2n; i=x,9,2 are indepen-

dent Poisson process with the transition rates A’s defined by
E[N; (DI=A1,; 4 and  EINY (D122 ,..4 for a
sufficiently small sampling interval 4. Therefore, we note
that the process u,(#), =0 is a homogeneous jump process
taking values from the set I';={—ny;, (1-n7,(2—n)7,,
00,7527, ..., ny}, i=2x,y,z . This set can be represented
by a so-called state transition diagram shown in Fig.2. This
figure shows that the process #;(#) may stay in any one of
the (2n+1) discrete states and then randomly transfer to the
one of the neighbouring states according to the properties
outlined in Remark 1.

Fig. 2. The state transition diagram of #(5).

Remark 1. (properties of the jump process u(t))

(1) u{®H can be characterized as being in one of the
mutually exclusive, discrete states of the set I'; at any
time =>(0.

(ii) Changes of states between the two neighbouring states
are possible at any time.

(iii) The probability of departure from one state to another
state depends only on the current state and is
independent of the time t.

(iv) The probability of more than one change of state during

a sufficiently small time interval 4 is assumed to be
negligibly small for the simplicity, though it is not
essential.

Remark 2. (fitness of the jump process to maneuver
commands)

Regarding the jump process in our target model, one may
raise a natural question: Why should we model the maneuvers
as a jump process governed by a Poisson-type counting
measure? The arguments. in favor of using such a model to
represent maneuvers are as follows: i) the actual pilot induced
commands in modern aircraft are often discrete and the
profile of the commands very much resembles to the one
shown in Fig.l, ii) any continuous process for a pilot
command corresponding to a large acceleration can be closely
approximated by a discrete process having several
intermediate jump states with each jump corresponding to the
velocity increment, and iii) the target model employing the
jump process for maneuvers yields a computationally efficient
tracking filter (see Remark 3 at the end of Section 3).

We now define the state vector X(# by X=(x,v, 2z,
9, 2, U, uyu), a Wiener process W# by W= (W, W, W),
and a Poisson process M# by N=(N, N, N, . Then the
target dynamics (1)-(3) can be described by the following
stochastic differential equation:

dX(H=A X(Ddt+ B dWt)+ C Ndb), ©)
where

000 1 0 0 000 000 000

000 0 1 0 000 000 000

G0 0 0 1 000 000 000

000 —e 0 0 000 100 000
A=1000 0 —a 0 000|, B={010|, C={000 @

000 0 0 —a000 001 000

000 0 0 0 000 000 7:00

o0 0 0 0 000 000 020

000 0 0 0 000 000 007

The solution of Eq.(6) can be written as

X(0= 0t )Xo+ [ 069 B AR+ [ 0(1,9) C N(d), ®)

where the transition matrix @(z,s) is

100a 0 0 8, 0 0
0100&100b10
00100&100171
000a2‘00a100
O(t,)=[000 0 a 0 0 @ O ®
0000 0 a0 0 g
0000 0 0 100
0000 0 001 O
0000000 O0 1

with the parameters:
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alE_}z {l_e—a(t—s)}’ aZEe—a(t-s)’ (10)
b= (a(t=9)e ™I~ 1},

Since, in practice, the observation process is usually of a
discrete type, it is convenient to write the continuous
dynamics of Eq.(6) in a discrete form. Let

WSHSHS .. SHh< .. <t (1

be the partitions of the period ([, t;] with the sampling
interval 4= | #441—fx| . Then it is clear from Eq.(8) that

7981
X(te)= Ot WX+ [, 014019
B dWs) + ft:'“cv(t,,ﬂ,s) CMd) - (12

In the following, we will use & to denote ¢, £=0,1,2,3,...,
and @, =0(k+1,k) for the simplicity of presentation. Now,

a discrete model for the jump process in Bq. (4) can be
written as

ufk+1) = wB)+ 71 tuin == mrilV120D = 1 tuti=+ miNon+12:(D) (13)
+ ﬁzl [u(B=(i~n— I)T](NJ]+1(A) Nll.!_l(d)) i=1x,9,2

Defining the variables B(#H)= @, B, C(H=0,C, Wk+1)

=Wk+1)— Wk and N(k+1) =Mk+1)—M4), Eq.(12)
yields a discrete state model of the system in cartesian
coordinates as

X(k+1)=0.X(EH+ B Wk+1)+ C(H Nk+1), (14

where W{k+1) satisfies E{ WA W '(B)=4 k. The
initial state X(0) is assumed to be Gaussian with mean
R(0 1 0) and covariance P(0 | 0). The two processes N and
V are assumed to be independent of X(0). Further,
Mk+1) is independent of W(k+1) and it’s components
N{k+1), i=x,, 2 are defined by

W,(k-i' 1) =1 [u;(k)=—nr;]M1.2(A) -1 (u (B =+ nr;]Nén+1,2n(A) (15)
+ gl tustp=timnera( NG i1 (D) = NG (D), i=1x,3,2

2. Measurement Model

The measurements generated from the target are usually in
terms of the range r, the bearing 6 and the elevation ¢ in
spherical coordinates. The nonlinear relationship transforming
the spherical observations to the cartesian form is as follows:

_ 3 F) 2 _ -1{_y _ -1 Z
r=V x*+ ¥+ 2°, f=tan (x)' o= tan (m) (16)

The standard Kalman filter can not be applied directly to
the system described by Eqgs.(14)-(16) because i) the radar
-observations are given in spherical coordinates while the

target dynamics are described in cartesian coordinates, and ii)
the representation of the system in one coordinaté system
results in a nonlinear estimation problem. Hence, in order to
make the system amenable to linear estimation theory, the
observation equations are usually approximated via a Taylor
series around the estimated position x; 2, (the position
components of the state prediction X(%+1 | &) at time k+1 ).
Thus, the approximate linear model of the observation is
given by

Y(k+1) = Hk+ DX (k+ 1)+ V(k+1), ) an
where V(&+ D)=(V,(k+1), Vk+1), V (k+1)) is a Gau-
ssian white noise sequence satisfying E{ VBV (B} =R

and is independent of N(k+1), Wk+1) and X(0). Further,
H(k+1) is the observation matrix given by

) hu h12 000000
ky 32h 000000

with

hy= xla, hp=yola, hy=z/a, for a=V x5+ ¥+ 25,

ha= —3/¢, hp=x/ct hu=0, for c=V £+ 5%, a9)

ha= —xzlb, hyp=—nzlb, hg=cld, for b=ad’c,

II1. The Minimum Variance Filter

In this section we develop a discrete, recursive, linear
minimum variance filter for the system described by Eq.(14)
and observation in Bq.(17). The results are summarized in
Theorem 1.

1. Derivation of the Filter Equation

‘Define Ff={Y(s), 0<i<k}), as the
history of the observations) generated by the process Y up to
time k and F."={ud{j), 0<j<Fk} as the history of the process
u; up to time k. In the following, we compute the a priori
estimate X(k+1| A=E{X(k+1)| Ff}. For this, we take
the conditional expectation, with respect to F} on both sides
of Eq.(14) to obtain

o-algebra (or the

EX(k+1)| Fy N 0E(X(R | FY+ B(HE{ WE+1) | F{)
+ URE{NME+1) | Fi}. (20)
Similarly, from Eq.(15) we have
E{N, (k+1) | F}= E{ (= naN1.2(D | F{)

— EQl =+ miNons1,24(D) | Fi} @1) .

ﬁzE{l CusB = = m=17d (N1 (D)
N, (DY FYY,

i=x,¥, 2.
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Using the properties of the conditional expectations [25],
Eq.(21) becomes

E{N{k+1) | F{}=EQ (9= BN, () | FYUFY | FD
~ El [up=4miENons 10D | FLUFY | FY}
+ BB 0= - 0B W a1 (D) = N -1 (D)

22)

|FEUFSY | FY,  for i=2,9, 7,

where the symbol LU denotes the minimal o¢-algebra

generated by F} and F,°. Employing the fact that

E{N; ;+1(D | FXUF} =EWN';1,(D}Y = 4 3,41, 23)

E{Nj1; ()| FUFY = E{N’,H,(A)} =40 @a)
for i=x,v,2 j=1,2,...,2n,

we obtain from Eq.(22) that

E(N(k+1) | Fi}=28 5 B0 tuip=-na | FI)
‘A/I12n+1.2n E(l [ui(B)=+ny] l F{}
+ ng{l th=G-n=vra | F3} (X1 = 25,2104 (25)
= A 2P{(B) — AX g1 24P 11 (B

+ gd(/l'}.i+1—/lif.i—1)P§(k) for i=x,y,2

where

(R =Pr[ u(B)==n—1)y| F{] 26)
for i=x,y,5 /=1,2,...,2n+1.

Utilizing E{ W%+1) | F{}=0, we obtain from Egs.(20) and
(25) that

X(E+1 1 D=0, Xk B+ OARALTD), @7
where  A(k+1)=(BLk+1),8,(k+1),BLk+1)) and the
component B,(k+1) is given by

BLk+1)=4 X1 Pi(B) =4 Vopi 5n Poyir(B) (28)

+ gd (A% 01— A% -1) PXR) for i=x,y,2.

The a posteriori estimate X(k+1 | b+ 1)=E{X(k+1) | F{,,
is computed next. If the standard deviations of the elements
of the noise processes W(k) and V(k) are close to y, one
may use the standard Kalman filter without any significant
degradation in the accuracy of estimates. In this paper,
therefore we consider only the case when the jump size »,
is large enough compared with standard deviations of the
elements of the noise processes W) and V(4). In this case
the standard Kalman filter yields unacceptable performance
and the proposed filter becomes essential. Under the
preceding assumption, one can determine the points the
discontinuity (or the maneuver) of the state X(k) from the
observation Y(k) by using a detection scheme (see Remark 4).
It is clear from Eq.(14) that the process X(k) is conditionally
Gaussian given the observation history {Y¥(), 0<i<#}.

Therefore, the estimate X(k+1 | k2+1) can be assumed to
have the following form |

X (k+1|k+1)= X(k+114 (29)
+ G+ DI Y+ 1) — Hk+1) X(k+1 | B,

where G(k+1) is the filter gain yet to be determined. In the
following, we use the minimum variance approach to obtain
an explicit expression for the filter gain G(k+1). Let

P(k| k—1)=E(X(B — R(k | k= D)X(B)— R(k| k=1))'}, (30)
P(k| B=E{(X(R) ~ X(k | D) X(BH— X(k| B}, (31

OB =Pr{u(D=G—n—1Dr}
for i=x,y,25 j=1,2,....2n+1, @32)
QE+1)=4 Qk+1). (33)

Employing Eqgs.(14), (27) and (28), exploiting the
independence of Wk and “N(%), and utilizing the fact that

E{(X(h—X(k|B) W (k+1) }=0 (34
E{((X(h—X(k|B) N (k+1) }=0 (35)
E((XB-RGEIR) V (k+D }=0 (36)
E{ Wk+1)(X(BH— R(k|B) }=0 (37
E { Nk+1)(X(B— X(E|B) }=0 (38)
EA{ Vr+1)(X(H— Xk | B) }=0 39

we obtain from Eq.(30) that
P(k+11 D= 0k| DO + Bk Qk+1) B'(k) 40)
+ ARAE+D C'(A),
where A(k+1) is a diagonal matrix whose components are
given by
A (k+1)= E{ N{(k+1) N,/ (k+1))
= O+ 1A 34+ O 1(B+ 1) A% 11 0,4 41)
2@;’(1&1) (A + 45,204

+

From the state transition diagram in Fig.2, it is obvious that
for a sufficiently small 4, the probabilities {@i(k+1); j=

1.2,....2n+1; i=x,y,2} are recursively computed by the
following relations:

O1(k+1) = (1= A", Oi(k) + (A5, DGR, 42)

@,(k+1) (/1'1 v d) @ (B+(1- /111+1A 43)
=X DOLR) + (N1, O 111 (B),

i+ 1) = (Xm0t DO, (B + (1= A1 20D B 1 (B, 44
for /=2,3,....2%m i==x,y,z.

Further it follows from Egs.(29) and (31) that
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PEt11E+]D) =Pk+11 AR
—P(k+1| DH (k+1DG(k+1)

— G+ DH(E+1D)P(E+11 A (45)
+ G+ DIH(E+ 1D P(E+1 | HH (B+1)
+R(k+DIG (k+1).

Utilizing the minimum variance approach, we obtain the
optimal filter gain matrix G(£+1) as

G+1)= P(k+1| HH (E+1D[H(E+1) 46)
P(E+1| AH (B+1)+R(E+1)] 7L

Substituting Eq.(46) into Eq.(45), we obtain

P(k+1 ] k+1)=[I— G+ DHE+ DIP(k+1] B). @n

2. Linear Minimum Variance Filter

The above results are summarized in the following
theorem.

Theorem 1.(Linear Minimum Variance Filter)

Let the process X(k) and Y(k) be governed by Equation
(14) and Equation (17), respectively. Further, the increment
N(k) of the Poisson process N is assumed to be independent

of the increment VA k) of the Wiener process W. Then the’

corresponding linear, adaptive minimum variance filter
consists of the following set of equations (Egs. (48)-(57)), for
the partitions defined by the expression (11) and a sufficiently
small sampling interval 4:

Prediction phase:

RE+1 |1 B=0, (k| B+ CRRKE+), 48)

Pk+11 B = 0Pk| DO+ BE Qk+1) B (K 49)
+ (R AE+ 1) C (k) :

where B(k+ 1) =(8(k+1), 8 &+1), 8L+ 1)) and BLk+1)

are given by
BLk+1)=4 A 2Pi(B) — 4 Ao 1.26P2ns1(R) » (50)
+ gd (A o1 = - DPAR),  i=x9,2.
A(k+1) is the diagonal matrix and-its elements are given by
AN+ 1) =0i(k+ DA+ Oir(k+ DAsir2d  (51)
+ 20+ D (W1 + 404,

with
Ok+D)=Priulk+)=0G—n-17r}, ;=12,..20+1,
governed by

O} (k+1)=(1— A2 6{(k) + (15,05 k), (52)

O k+1)= (A1, 4)@i1—1(/?)+(1—(]i1.1+14 (53)
“‘/1'1.1—14’)_@}(/6) + (X441, 0'11(R),

O 1 (bt 1) = (A% 20410 O, (B)

+ (1= Aot 1,20 O 1(B), ' (54)
for i=x,y,z and [=2,3,...,2%

Filtering phasé:

X(k+1 1 k+1) = X(k+1 | B+ Gle+ DI Y(k+1) (55)
—H(kt+1 X(k+11 A1,

Gle+1= P(k+1| DH (k+ 1D H(k+1) (56)
P(k+1 | BDH (B+1D)+RE+1)] 71,

e+l bt D=[I-GKE+DHE+DIP(k+11 R, O (87)

Remark 3.

The proposed filter has a similar form as the standard
Kalman filter, because for C(k) =0 (which represents the
non-maneuvering target tracking situation), the proposed filter
(Equations (48)-(57)) reduces to the standard Kalman filter. It
is noted that the filter proposed by Gholson et al.[18] seems
to be structurally similar to our proposed filter, however with
one major difference with respect to computational
requirements. Gholson’s filter {s based upon a semi-
Markovian model to represent maneuvers and hence it is
computationally intensive. The intense computational burden
of the Gholson’s algorithm has explicitly been pointed out by
Gholson et.al[18] as well as by Bogler[10]. This is further
explained in the next. If Gholson’s scheme, ie. the
semi-Markovian maneuver model having m discrete maneuver
levels, is used, one has to perform about s°computer
instructions for calculating the state estimate X(Z+ 1%+ 1).
On the contrary, if our proposed method, i.e. the maneuver
model using the jurnp process having m discrete jump levels,
is used, one need to carry out only 2m computer instructions

for obtaining the same quantity X(%+ 1j£+1), instead.

Remark 4. (Computation of the conditional probabilities
P(R)

An explicit expression for the conditional probabilities
Pi(k; 1=1.2,..., 2n+1; i=2x,y,2, defined by Eq.(26) is,
in general, difficult to obtain. Although a precise scheme for
obtaining the conditional probabilities P! is highly desirable
for an optimal filter performance, the excessive computational
load may lead us to consider a sub-optimal solution as long
as it warrant to yield a good filter performance, as discussed
in the next. Since the standard deviations of the elements of

the noise processes W (k) and W(k) are, in practice,
sufficiently small enough compared to the jump size y; it is
possible to approximate the value of P! when the presence

or absence of a jump(or maneuver) is detected in the system.
This can be accomplished by monitoring the velocity
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residuals %=v— 7 where ov={xy 2’ and o={x,
3,2} and then comparing it against a threshold v 4. If
7=v4, then a jump (or maneuver) is detected and the
corresponding probability P} is set to 0.9. Otherwise, it is set
to 0.1. The performance of the proposed filter employing this
sub-optimal scheme for Pi(k) has been demonstrated in
Section 4. In fact, the results of the simulation studies clearly
* show that this sub-optimal scheme for computation of Pi(%)

suffices to produce a fairly reliable state estimates for a fast
maneuvering target.

IV. The Monte Carlo Simulation

In this section, we consider a numerical example for the
system model and the filter equation developed in the
preceding two sections. In Section 4.1. we develop a numerical
algorithm in order to compute the estimate X(k+1|k+1)
and the corresponding covariance matrix P(k+1| 2+1) on
the basis of theorem 1 in Section 3.2. Employing the
proposed algorithm, the Monte Carlo simulation is carried out
in Section 4.2. The simulation demonstrates the performance
of the proposed filter for the target model proposed in Section
2 with known jump parameters. The concluding remarks are
presented in Section 4.3.

1. Numerical Algorithm

The major steps of the algorithm are summarized as
follows: .
Step 1: Set the time index k to zero.
Step 2: Given 4, n, A%, j=1,2,...2n, i=x,v,2, Q and
R, generate the random processes W(k+1), V(k+1)
-~ and N(k+1)
Step 3: Given 4, B, C, ¢ and X(k), compute the state
X(k+1) using Eq.(14).
Step 4: Given H(k+1), compute the obsetved process
Y(k+1) using Eq.(17)..
Step 5: From the estimate X(k| k) compute X(k+1|4)
using Egs. (48) and (50).
Step 6: From @j(#), j=1,2,..,2n+1, i=x,y,z, compute
the probabilities @{(k+1),7=1,2,...2n+1, i=x,
v,z, using Egs.(52) - (54).
- Step 7: From 0{k+1),j=1,2,..,.2n+1, i=x,y,z compute
Alk+1) using Eq.(51).
Step 8: From the covariance matrix P(k| %) compute
P(k+1 | & using Eq.(49).
Step 9: Calculate the gain matrix G(k+1) using Eq.(56)
Step 10: Compute the updated estimate X(k+1|k+1)
using Eq.(55).

Step 11: Compute the updated covariance matrix P(%+1
| #+1) using Eq.(57).

Step 12: Evaluate the R.M.S. errors (called tRMS) of
X(k+1) defined by

RMSIX(k+ D= 5 3 (X0~ X6 1 )¥i=1.2,..6, (58)

where X, (k+1) is the I-th component of the state vector

X(k+1).

Step 13: Compute the R.M.S. ensemble errors(called eRMS)
of the position and velocity.

Step 14: If the time k<¢; (¢; is the final time), set
k=k+1 and go to Step 2. Otherwise go to Step

15,
Step 15: Print out the results and stop.

2. Monte Carlo Simulation and Analysis of the Results

For the purpose of simulation we used the following
system parameters: the drag coefficient #=0.3, the sampling
interval A4=1.0sec., the jump size y,=100, Q= diag.(25%,
252,259/ and R= diag.(35°f£, 0.0027ad., 0.0027ad.). The
initial position and velocity of the target were taken as
X(0) = (600, 850,450, —150,225,120)". In order to demon-
strate the performance of the filter, the Monte Carlo
simulation was carried out in the following.

Suppose that the jump pfocess u;(f) is given by seven
discrete states with constant transition rates A’s as follows.

Fig. 3. The jump process w;(?).

In Fig.3 the parameters A’s are assumed to be known and
chosen as

A12=0.90, A53=0.50, A%,=0.30,
Aps=0.15, A5=0.20, A5,=0.35,

51=0.25, A5,=0.15, 2)5=0.15, (59)
115‘420.30, /1’6,5=0.50, /1,7'(;:0.80, .
for i=x,y,

%,=0.90, A%3=0.80, A%,=0.80, A55=0.07,
46=0.01, 45,=0.01,13,=0.10, 45,=0.01,  (60)
% 3=0.01, A%,=0.80, A%5=0.80, A%5="0.90.

According to the jump process(Fig.3) which has seven
discrete states we have generated the pilot commands shown
in Fig.4-Fig.6. Using the proposed filter we computed the
corresponding estimate X(%| 4 and the RMS errors in
accordance with 200 sample paths for the state X(%) and
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observation Y(k). Detailed numerical results were obtain from
the Monte Carlo simulation. Fig.7-Fig.9 present- the
observations, i.e. the range, the bearing angel and the
elevation angle for one typical sample run. The velocity and
position profiles(actual and estimated) for a typical sample
run are shown in Fig.10-Fig.12 and Fig.13-Fig.15,
respectively. The position and velocity tRMS errors are
shown in Fig.16 and Fig.17, respectively and the eRMS
errors are presented in Fig.18-Fig.20 and Fig.21-Fig.23. It is
evident from Fig.10-Fig.23 that
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Fig. 4. The pilot command in x direction.
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Fig. 5. The pilot command in y direction.
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Fig. 6. The pilot command in z direction.
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Fig. 10. The velocity in x direction.
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Fig. 12. The velocity in z direction.
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Fig. 16. The tRMS errors of the position.
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(i) The estimated state X(k | k) is very close to the true
state X(k&) throughout entire period of tracking and even
during the rapid maneuvering under which the other
tracking filters[10] usually suffer from significant
degradation in performance.

(i1) In Fig.13-Fig.15, the estimated and the actual values are
almost identical. This is, in fact, due to large scale of
the plot compared to the real difference which is order
of 30ft. This can be more clearly observed from the

: position eRMS -plot.

(iii) The eRMS errors presented in Fig.18 and Fig.19 clearly
show that the proposed filter yields state estimates as
close as to the level of the noise standard deviations.
From the results for tRMS errors shown in Fig.16 and
Fig.17, we note that the filter is convergent to the steady
state value since the tRMS values are decreasing with
time. This also implies that the proposed filter is stable.

(iv) On the whole, the response of the proposed filter to
sudden maneuvering target is fairly good and hence one
should expect an optimal estimate(in the sense of
minimum variance) of fast maneuvering targets.

3. Concluding Remarks

In summary, the above simulation studies clearly demon-
strate that the proposed filter can efficiently track a fast
maneuvering target, where most of conventional adaptive
filters fail to track properly. In the simulation discussed
above, no attention was paid to optimize the computational
time for the solution of the filter equation, yet the time was
found to be reasonably small. A typical run for the 70
seconds tracking scenario of the system and filter equations
given in Theorem 1 of Section 3.2 took 3.5sec (in CPU time)
on a SUN Ultra-1 workstation computer. It is'expected that
the computational time could be further reduced by exploiting
more efficient programming techniques.
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V. Conclusions

In this paper, a maneuvering target model with the [9]
maneuver dynamics modeled as a jump process of
Poisson-type has been proposed. The jump process represents,
the deterministic maneuver(or pilot)commands and is des-
cribed by a stochastic differential equation driven by a [10]
Poisson process taking values from a set of discrete states.
Employing the new maneuver model and using the noisy
observations described by a linear difference equation, the [11]
author has developed a new recursive, unbiased minimum
variance filter, which is structurally simple, computationally
efficient and hence real-time implementable. The main
contribution of the paper is the development of such an [12]
efficient filter for tracking a fast maneuvering target on the
basis of the jump processes to represent pilot commands. The
proposed filter does not require a time-consuming complex
procedure for computing the filter gain or covariance matrices
unlike the other existing algorithms proposed in the literature. [13]
The performance of the proposed filter was assessed through
the numerical results generated from the Monte Carlo
simulation. It is clearly observed, from the numerical results.
for a fast maneuvering target, that the proposed filter provides [14]
estimates close to the true track. The sensitivity analysis of
the filter with respect to the jump parameters is under study
and the result will be reported in a forthcoming paper.
Modifications of the proposed filter for applications to [15]
maneuvering targets in a cluttered environment present an
interesting subject for a further development.
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