Thermoelectric Properties of the Hot-Pressed n-Type PbTe with the Powder Processing Method

분말 제조공정에 따른 n형 PbTe 가압소결체의 열전특성

  • Choi, Jae-Shik (Department of Merallurgy and Materials Science, Hong Ik University) ;
  • Oh, Tae-Sung (Department of Merallurgy and Materials Science, Hong Ik University) ;
  • Hyun, Dow-Bin (Division of Metals, Korea Institute of Science and Technology)
  • 최재식 (홍익대학교 공과대학 금속.재료공학과) ;
  • 오태성 (홍익대학교 공과대학 금속.재료공학과) ;
  • 현도빈 (한국과학기술연구원 금속연구부)
  • Published : 1998.02.01

Abstract

Bi-doped n-type PbTe thermoeletric materials were fabricated by mechanical alloying and hot pressing. The intering characteristics and thermoelectric properties of the hot- pressed PbTe were characterized and compared with the properties of the specimens prepared by meltingigrinding method. The hot-pressed PbTe specimens fabricated by mechanical alloying exhibited more negative Seebeck coefficient, higher electrical resistivity and lower thermal conductivity. compared to ones prepared by meltingigrinding. The maximum figure-of-merit increased and the temperature for the maximum figure-of-merit shifted to lower temperature for the specimens fabricated by mechanical alloying. When hot pressed at $650^{\circ}C$, 0.3 wt% Bi-doped PbTe fabricated by mechanical alloying and meltingjgrinding exhibited maximum figure-of-merits of $1.33\times10^{-3}/K$ at $200^{\circ}C$ and $1.07\times10^{-3}/K$ at $400^{\circ}C$ respectively.

Bi를 첨가한 n형 PbTe 가압소결체를 기계적 합금화 공정으로 제조하여, 소결 특성과 열전특성을 분석하고 이를 용해/분쇄법으로 제조한 PbTe가압소결체와 비교하였다. 기계적 합금화 공정으로 제조한 PbTe가압소결체에는 용해/분쇄법으로 제조한 시편에 비해 Seebeck계수가 음의 값으로 증가하였으며, 전기비저항이 증가하고 열전도도가 감소하였다. 또한 기계적 합금화 공정으로 제조한 PbTe에서 최대성능지수가 증가하였으며, \ulcorner대성능지수를 나타내는 온도가 저온으로 이동하였다. 0.3wt% Bi를 첨가한 PbTe를 $650^{\circ}C$에서 가압소결시 기계적 합금화 공정으로 제조한 시편은 $200^{\circ}C$에서 $1.33\times10^{-3}/K$의 최대성능지수를 나타내었으며, 용해/분쇄법으로 제조한 시편은 $400^{\circ}C$에서 $1.07\times10^{-3}/K$의 최대성능지수를 나타내었다.

Keywords

References

  1. CRC Handbook of Thermoelectrics D.M.Rowe(ed.)
  2. Proc. 12th Int. Conf. on Thermoelectrics T.Tsuno;M.Sakai;H.Watanabe;M.Shinmei
  3. Proc. 12th Int. Conf. on Thermoelectrics H.Arashi;H.Naito
  4. Proc. 15th Int. Conf. on Thermoelectrics V.L.Kuznetsou
  5. Proc. 15th Int. Conf. on Thermoelectrics T.Kajikawa
  6. CRC Handbook of Thermoelectrics D.M.Rowe(ed.)
  7. Proc. 12th Int. Conf. on Thermoelectrics F.Fukuda;A.Onodera;H.Haga
  8. Proc. 12th Int. Conf. on Thermoelectrics A.Yanagitani;S.Nishikawa;Y.Kawai;S.Hayashimoto;N.Itoh;T.Kataoka
  9. J. Korean Inst. Metals and Mat. v.35 B.Y.Jung;S.E.Nam;D.B.Hyun;J.D.Shim;T.S.Oh
  10. J. Korean Inst. Metals and Mat. v.35 H.J.Kim;J.S.Choi;D.B.Hyun;T.S.Oh
  11. Proc. 9th Int. Conf. on Thermoelectrics B.A.Cook;B.J.Beaudry;J.L.Harringa;W.J.Barnett
  12. Proc. 15th Int. Conf. on Thermoelectrics J.L.Harringa;B.A.Cook
  13. Scripta Metall. Mater. v.32 T.S.Oh;J.S.Choi;D.B.Hyun
  14. J. Appl. Phys. v.30 T.C.Harman;J.H.Cahn;M.J.Logan
  15. Phys. Rev. v.94 S.J.Silverman;H.Levinstein
  16. J. of Metals v.8 R.Sundaresan;F.H.Froes
  17. J. Appl. Phys. v.33 J.M.Schultz;J.P.McHugh;W.A.Tiller
  18. Proc. 14th Int. Conf. on Thermoelectrics V. Fano;I.Ortalli;K.Pozela;G.Meletti
  19. J. Mater. Sci. v.20 R.Breschi;V.Fano
  20. J. Mater. Sci. v.15 R.Breschi;A.Olivi;A.Camanzi;V.Fano
  21. Proc. 1st European Conf. on Thermoelectrics L.Borissova;S.Plachkova;V.Vulchev;G.Christakudis
  22. Inorg. Mat. v.19 D.M.Gel'fgat;Z.M.Dashevskii
  23. J. Appl. Phys. v.23 W.D.Lawson