Characteristic and Adhesive Strength Change by Heat Treatment of the Plasma Sprayed $ZrO_{2}$- Thermal Barrier Coatings(TBC)

플라즈마 용사된 $ZrO_{2}$-단열 코팅층의 특성 및 열처리에 따른 접합강도변화

  • Kim, Byoung-Hee (Dept. of Materials Science and Engineering, Chungnam National University) ;
  • Suhr, Dong-Soo (Dept. of Materials Science and Engineering, Chungnam National University)
  • 김병희 (충남대학교 공과대학 재료공학과) ;
  • 서동수 (충남대학교 공과대학 재료공학과)
  • Published : 1998.06.01

Abstract

In this study, two-layer thermal barrier coatings composed of plasma sprayed 0.3mm $ZrO_2(8wt% Y_2o_3)$ ceramic coating layer and O.lmm $NiCrAlCoY_20_3$ bond coating layer on AISI 316 were investigated microstructure of the coating, oxidation of the metallic bond coating and adhesive strength to evaluate the durability of coating layer after cyclic and isothermal test at 90$0^{\circ}C$. And quantitative phase analysis of $ZrO_2(8wt% Y_2o_3)$ ceramic coating was performed as a function of thermal exposure time using XRD technique. The results showed that the amount of m - 2rO, phase in the coating was slightly increased with increasing thermal exposure time at 90$0^{\circ}C$. The c/a ratio of t' - $ZrO_2$ in the as-sprayed coating was 1.0099 and slightly increased to 1.0115 after 100 hours heat treatment. It was believed that $Y_2O_3$ in high yttria tetragonaJ(t') was transformed to low yttria tetragonaJ(t) by $Y_2O_3$ diffusion with increasing thermal exposure time. The adhesive strength was gradually decreased as thermal exposure time increased. After the isothermal test, the failure predominantly occured in ceramic coating layer. On the other hand. the specimens after cyclic thermal test were mostly failed at bond coating/ceramic coating interface. The failure was oeeured by decreasing the bond strength between bond coating and oxide scale which were formed by oxidation of the metallic elements within bond coating and by thermal stress due to thermal expansion mismatches between the oxide scale and ceramic coating.

플라즈마 용사법을이용하여 AISI 316 스테인레스 금속모재에 0.1mm 두께의 $NiCrAlCoY_{2}O_{3}$금속 결합층과 0.3mm 두께의 $ZrO_{2}(8wt%Y_{2}O_3$) 세라믹층으로 구성된 이층 단열코팅층을 제조하였다. 코팅층의 미세조직, 금속결합층의 산화를 고찰하였으며, $900^{\circ}C$에서 등은 시험과 열반복시험 후, 접합강도시험을 통하여 코팅층의 단사정 상은 열처리시간이 길어질수록 약간 증가하였다. 또한 비변태성 t'의 c/a는 용사상태에서 1.0099이였으며, 100시간 열처리 후에는 1.0115로 약간 증가하였다. 그리고 용사층의 접합강도는 열처리 시간이 길어질수록 감소하였다. 등온열처리 후에는 1.0115로 약간 증가하였다. 그리고 용사층 의 접합강도는 열처리 시간이 길어질수록 감소하였다. 등온열처리 후, 파괴는 주로 세라믹층에서 일어났으며, 반복 열처리되 시편에서는 10회 이후 대부분 금속결합층/세라믹층의 계면에서 일어났다.

Keywords

References

  1. NASA CR-135147 N.Calson;B.L.Stone
  2. NASA TM-73712 J.S.Crark(et al.)
  3. NASA TM-X-73586 S.R.Levine;J.S.Clark
  4. British Ceramic proceedings (The British Ceramic Society) No. 34 A.Benett
  5. Thin Solid Films v.73 D.L.Ruckel
  6. J. Vac. Sci. Technol v.3 no.A G.W.Meetham
  7. High Tech Ceramic I.Kvernes
  8. Ceramic for Advanced Heat Engine. R.Kamo
  9. Prov. 11th Int. Conf. on Thermal Spraying J.M.Guillemot(et al.)
  10. Advances in Ceramic v.3 R.A.Miller;J.L.Smialex;R.G.Garlick
  11. Acta Metall. v.27 no.2 D.L.Porter;A.G.Evans;A.H.Heuer
  12. Thin Solid Films v.95 R.A.Miller
  13. Advanced Ceamic Materials v.2 no.1 S.L.Shinde(et al.)
  14. Chem Tech no.June M.L.Thorpe
  15. Ceramic Bulletin v.61 no.2 Stephan Stecure
  16. Thin Solid Film v.95 R.A.Miller;C.E.Lowell
  17. DVS'80 S.L.Harris;R.C.Cobb;H.Jame
  18. Ceramic transactions v.34 Functionally Gradient Materials J.Birch Holt;Mitsue Koizumi;Toshio Hirai
  19. ASTM. C. 633-79
  20. J. Am. Ceram. Soc. v.67 no.6 H.Toraya;M.Yoshimura;S.Somiya
  21. Am. Ceram. Soci. Science and Techology of Zirconia Ⅱ D.S.Suhr;T.E.Mitchell
  22. J. Mater. Sci. v.15 R.McPHERSON
  23. Thin Solid Film v.39 V.H.S.Wilm
  24. Advanced in Ceramic v.3 C.A.Anderson;T.K.Gupta
  25. J. Am. Ceram. Bull. v.60 no.5 R.D.Maier;C.W.Andrews;C.M.Scheuermann
  26. Ph.D. Thesis, Case Western Reserve Univ. D.S.Suhr
  27. J. Am. Ceram. Soc v.72 no.2 B.C.Wu;E.Chang;S.F.Chang;D.Tu