Interpretation of Corrosion Mechanism on Anode side Separator for MCFC

용융탄산염 연료전지에서 양극측 분리판의 부식기구 해석

  • Park, Hyeong-Ho (Dept. of Electrical Engineering Chonbuk National University) ;
  • Lee, Min-Ho (Dept. of Metallurgical Eng., Kwang yang College) ;
  • Lee, Kyu-Taek (Dept. of Electrical Engineering Chonbuk National University)
  • 박형호 (전북대학교 공과대학 금속공학과) ;
  • 이민호 (광양대학 제철금속과) ;
  • 이규택 (전북대학교 공과대학 금속공학과)
  • Published : 1998.06.01

Abstract

This study was carried out for investigating the corrosion behaviors, corrosion mechanisms, and behaviors of elements on a separator for a molten carbonate fuel cell under both the electrolyte and anode side environment. A 310S austenitic stainless steel was used as the separator material. Corrosion proceeded via three steps; the formation step of corrosion product in which rapid corrosion takes place until stable corrosion product is formed after the beginning of corrosion, the protection step against corrosion until breakaway occurs after the formation step of stable corrosion product and the advancing step of corrosion after the breakaway. From the standpoint of the behavior of the elements in the specimen, Fe and Cr, Ni were enriched in the region of corrosion product, in the region of corrosion protection, and at the Cr-deplete zone, respectively. With respect to corrosion mechanism, ionization of electrolyte at the anode side was the main corrosion mechanism, and the final corrosion products were $LiFeO_2$ and $LiCrO_2$ at the anode side.

본 연구에서는 용융탄산염 연료전지용 분리판으로서 오스테나이트계 스테인레스강 중, 310S를 사용하여 용융염 전해질 및 양극측 분위기에서 부식거동, 부식생성물의 형성과정 및 기구에 관한 고찰을 실시하였다. 분리판의 부식 진행과정은 부식반응 이후 안정 부식생성물이 형성되기까지 빠른 부식이 진행되는 부식생성물 형성단계와 안정 부식생성물 형성 후 보호파괴가 일어나기 까지의 부식 억제단계, 그리고 보호파괴 이후 부식이 다시 증가되는 부식 진행단계의 3단계 과정을 경유하며 진행하였다. 분리판 내 원소들의 농도분포는 부식생성물 형성영역에서는 Fe가, 부식 방어영역에서는 Cr이, 그리고 Ni은 Cr 고갈영역과 기지 안쪽에서 높게 형성되었다. 또한 양극측에서 분리판은 전해질의 이온화에 의한 부식이 주된 부식기구였으며, 최종 부식생성물은 $LiFeO_2$$LiCrO_2$였다.

Keywords

References

  1. Journ. of Electrochem. Soc. v.136 no.2 S.Srinivasan
  2. Fuel Cell Handbook A.J.Appleby;F.R.Foulkes
  3. Handbook of Batteries and Fuel Cells A.P.Fickett
  4. Proc. Symp. Molten Carbonate Fuel Cell Technology v.13 B.S.Baker
  5. Molten Salt Technology J.R.Selman;L.G.Manianowski
  6. Fuel Cells A Handbook Prepared by the United States. Department of Energy under contract No. DE-AC03-76SF0098 K.Kinoshita;F.R.Hclarnon;E.J.Cairns
  7. Journ. of Power Source v.24 Q.M.Nguyen
  8. U.T.C for Quarteny Technical Progress Report No.22 Development of MCFC Power Plant Technology
  9. Electrochem. Soc. Molten Carbonete Fuel Technology P.Singh;D.A.Shores;J.R.Selman(ed.);T.D.Claar(ed.)
  10. Proc. Second International Symp. Molten Salts;Electrochem. Soc. v.PV81-10 H.C.Maru;J.Braunstein(ed.);J.R.Selman(ed.)
  11. Proc.Third Internat. Symp. Molten Carbonate Fuel Cell Technology;Electrochem. Soc. C.Yuh;R.Johnsen;M.Farooque;H.Maru;D.Shores(ed.);J.R.Selman(ed.)
  12. 防蝕技術 v.23 西田惠三
  13. Journ. of the Soc. of Mat. Eng. for Resources of Japan v.10 no.2 H.H.Park;S.Goto;S.Aso;K.T.Lee;Y.Komatsu