Electronic Absorption Spectra of the Fullerene $C_{60}$:From a Molecule to Crystals

Fullerene $C_{60}$의 전자흡수 스펙트럼:분자에서 결정까지

  • Baek, Cheong-A (Department of Materials Engineering, Sun Moon University) ;
  • Dimitriev, O.P. (Institute of Semiconductor Physics) ;
  • Vlaskin, V.I. (Department of Materials Engineering, Sun Moon University) ;
  • Lee, Ju-Hyeon (Department of Materials Engineering, Sun Moon University) ;
  • Nam, Hee-Dong (Department of Inorganic Materials Engineering, Myong Ji University) ;
  • Park, Sung (Department of Inorganic Materials Engineering, Myong Ji University)
  • 백청아 (선문대학교 재료공학과) ;
  • ;
  • ;
  • 이주현 (선문대학교 재료공학과) ;
  • 남희동 (명지대학교 무기재료공학과) ;
  • 박성 (명지대학교 무기재료공학과)
  • Published : 1998.08.01

Abstract

The change of electronic absorption spectra of the fullerene $C_{60}$ in the visibJe- near UV range was examined when the molecules aggregated into different clusters such as clusters in solution and clusters in thin films. Absorption peaks were observed at 2.73 eV. These peaks did probably not come from the feature of the isolated molecules but from the direct interaction of the molecules. Absorption peaks were also observed at 3.35 eV from grained fullerene films. We think these peaks came from the interaction of the molecules at interfaces of grains. Dichroism of this absorption was also found from samples with anisotropic macrostructures.

분자들이 용액 내에서의 cluster나 박막 내에서의 cluster와 같이 다른 cluster로 뭉쳐졌을 때, 가시광선과 자외선부근의 영역에서 fullerene $C_{60}$의 전자흡수 스펙트럼 변화가 관찰되었다. 2.73eV에서 흡수 피크들이 관찰되었는데, 이러한 피크들은 독립된 분자들로부터 온 것이 아니라 분자들의 직접적인 상호작용으로부터 온 것으로 생각된다. Grained fullerene 박막에서는 흡수피크들이 3.35eV에서도 관찰되었는데 이러한 피크들은 grain의 계면에서 분자들의 상호작용으로부터 온 것으로 생각된다. 이러한 흡수의 Dichroism은 비등방성 macrostructure를 갖는 시료에서도 관찰되었다.

Keywords

References

  1. Soild State Commun. v.81 M.Kaiser;J.Reichenbach;H.J.Byrne;J.Anders;W.Maser;S.Roth;A.Zahab;P.Bentier
  2. Acc. Chem. Res. v.25 R.C.Haddon
  3. Nature v.347 W.Kratschmer;L.D.Lamb;K.Fostiropoulos;D.R.Huffman
  4. Chem. Phys. Lett v.186 K.Sinha;J.Menendez;R.C.Hanson;G.B.Adams;J.B.Page;O.F.Sankey;L.D.Lamb;D.R.Huffnam
  5. Soild State Commun. v.81 T.Pichler;M.Matus;J.Kurti;H.Kuzmany
  6. Phys. Rev. Lett. v.66 S.Saito;Y.Oshiyama
  7. Phys. Rev. Lett. v.67 W.Y.Ching;M.Z.Huang;Y.N.Xu
  8. Proc. Int. Aut. School-Conf. SSPFA'94 I.A.Yurchenko;S.A.Shilo;E.Burstein;W.J.Romanow;L.Brard
  9. Chem. Phys. Lett v.182 A.Skumanich
  10. Phys. Stat. Sol(b) v.137 J.Feldmann;R.Fischer;E.O.Gobel;S.Schmitt Rink
  11. Chem. Phys. v.160 S.Leach;M.Vervloet;A.Despres;E.Breheret;J.P.Hare;T.J.Dennis;H.W.Kroto;R.Taylor;D.R.M.Walton
  12. Chem. Phys. Lett v.183 Z.Gazsyna;P.N.Schatz;J.P.Hare;T.J.Dennis;H.W.Kroto;R.Taylor;D.R.M.Walton
  13. Chem. Phys. Lett v.144 F.Negri;G.Orlandi;F.Zerbetto
  14. Soild State Commun v.91 T.Tsubo;K.Nasu
  15. Proc IUMRS-ICAM-93 R.Ross;S.Kazaoui;N.Minami
  16. J. Phys. Chem v.97 Y,M.Wang;P.V.Kamat;L.K.Patterson
  17. Appl. Phys v.A56 W.Krakow;N.M.Rivera;R.A.Ray;R.S.Ruoff;J.J.Cuomo
  18. Thin Solid Films v.257 A.F.Hebard;O.Zhou;Q.Zhong;R.M.Fleming;R.C.Haddon
  19. Surface Sc. v.289 H.G.Busmann;R.Hiss;H.Gaber;I.V.Hertel
  20. Thin Solid Films v.257 K.Tanigaki;S.Kuroshima;T.W.Ebbesen