Removal of Fe Impurities on Silicon Surfaces using Remote Hydrogen Plasma

리모트 수소 플라즈마를 이용한 Si 표면 위의 Fe 불순물 제거

  • Lee, C. (Dept. of Metallurgical Eng., of Inha Univ.) ;
  • Park, W. (Dept. of Metallurgical Eng., of Inha Univ.) ;
  • Jeon, B.Y. (Dept. of Metallurgical Eng., of Inha Univ.) ;
  • Jeon, H.T. (Dept. of Metallurgical Eng. of Hanyang Univ.) ;
  • Ahn, T.H. (Dept. of Metallurgical Eng. of Hanyang Univ.) ;
  • Back, J.T. (Electronics and Telecommunications Research Institute(ETRI) of Korea) ;
  • Shin, K.S. (RIST) ;
  • Lee, D.H. (RIST)
  • Published : 1998.08.01

Abstract

Effects of remote hydrogen plasma cleaning process parameters on the removal of Fe impurities on Si surfaces and the Fe removal mechanism were investigated. Fe removal efficiency is enhanced with decreasing the plasma exposure time and increasing the rf-power. The optimum plasma exposure time and rf-power are 1 min and 100W. respectively, in the range below 10 min and 100W. Fe removal efficiency is better under lower pressures than higher pressures, and the optimum $\textrm{H}_2$ flow rate was found to be 20 and 60sccm, respectively, under a low and a high pressure. The post-RHP(remote hydrogen plasma) annealing enhanced metallic contaminants removal efficiency, and the highest efficiency was achieved at $600^{\circ}C$. According to the AFM analysis results Si surface roughness was improved by 30-50%, which seems to be due to the removal of particles by the plasma cleaning. Also. Fe impurities removal mechanisms by remote hydrogen plasma are discussed.

리모트 수소 플라즈마에 의한 Si 웨이퍼 표면 위의 Fe 불순물의 제거효과를 조사하였다. 세정시간 10분 이하와 rf-power 100W이하의 범위에서 최적 공정조건은 각각 1분과 100W이였으며, 플라즈마 노출시간이 짧을수록, rf-power가 증가할수록 Fe제거 효과가 더 향상되는 것으로 나타났다. 또한, 고압보다는 저압 하에서 Fe 제거효과가 더 우수하였는데, 저압 하에서는 $\textrm{H}_2$ 유량이 20sccm, 고압 하에서는 60sccm일 때 Fe 제거효과가 가장 우수하였다. 플라즈마 세정 직후의 열처리는 금속오염의 제거효과를 향상시켰으며, $600^{\circ}C$에서 최상의 효과를 얻을 수 있었다. AFM 분석결과에 의하면 표면 거칠기는 플라즈마 세정에 의하여 30-50% 향상되었는데, 이것은 Fe 오염물과 더불어 Si 표면의 particle이 제거된 데 기인하는 것으로 생각된다. 또한 본 논문에서는 수소 플라즈마에 의한 Si 웨이퍼 표면의 Fe 제거기구에 관해서도 자세히 고찰하였다.

Keywords

References

  1. Plasma Technology For ULSI Process 서울대학교 반도체 공동 연구소
  2. Semiconductor Integrated Circuit Processing Technology W.R.Runyan;K.E.Bean
  3. Handbook of Semiconductor wafer cleaning technology Wener Kern
  4. Handbook of Semiconductor wafer cleaning technology Wener Kern
  5. IEEE TRANSACTIONS ON ELECTRON DEVICES v.39 no.1 Single-Wafer Integrated Semiconductor Device Processing Mehrdad M.Moslehi;Richard A.Chapman;Man Wong;A.jit Paranjpe;Habib N.Najm;John Kuehne;Richard L.Yeakly;Cecil J.Davis
  6. J. electrochem. Sco. v.142 no.4 Jennifer A.Sees;Lindsey H.Hall
  7. J. Vac. Sci. Technol v.B12 no.5 C.W.Nam;S.Ashok
  8. formel of Ashland Chemical, Microcontamination v.27 H.F.Schmit;M.Meuris;P.W.Mertens;S.Verharerbeke;M.M.Heyns;IMEC;K.Dellenbeck
  9. Handbook of plasma processing technology S.M.Rossnagel;J.J.Coumo;W.D.Westwood
  10. ECS. v.144 no.1 KiHyum Hwang;EuiJoon Yoon
  11. Lange's Handbook of Chemistry(14th ed) John.A.Dean
  12. J.Appl.Phys v.71 no.2 M.Delfino;S.Salimian;D.Hodul;A.Ellingboe;W.Tsai
  13. Appl.Phys.Lett v.58 K.Nakashima;M.Ishii;I.Tajima;M.Yamanoto