A Study on Interfacial Reaction and Mechanical Properties of 43Sn-57Bi-X solder and Cu Substrate

Sn-Bi-X계 땜납과 Cu 기판과의 계면반응 및 기계적 특성에 관한 연구

  • Seo, Yun-Jong (Kwanju Chonnam Regional small and Medium Business Office) ;
  • Lee, Gyeong-Gu (Dept. of Iron & Metallurgical Engineering, Hanlyo University) ;
  • Lee, Do-Jae (Dept. of Metallurgical engineering, Chonnam National University)
  • 서윤종 (광주 전남지방 중소기업청) ;
  • 이경구 (한려대학교 제철금속학과) ;
  • 이도재 (전남대학교 공과대학 금속공학과)
  • Published : 1998.09.01

Abstract

Interfacial reaction and mechanical properties between Sn-Bi-X ternary alloys(X : 2Cu. 2Sb 5In) and Cu-substrate were studied. Cu/solder joints were subjected to aging treatments for up to 60days to see interfacial reaction at $100^{\circ}C$ and then were examined changes of microstructure and interfacial compound by optical microscopy, SEM and EDS. Cu/solder joints were aged to 30days and then loaded to failure at cross head speed of 0.3mm $\textrm{min}^{-1}$ to measure strength and elongation. According to the result of EDS, it is supposed that the soldered interfacial zone was composed of $\textrm{Cu}_{3}\textrm{Sn}$ and $\textrm{Cu}_{6}\textrm{Sn}_{5}$. According to the tensile test of Cu/solder joint, joint strength was decreased by aging treatment. Fractographs of Cu/Sn-Bi solder detailed the effect of aging on fracture behavior. When intermetallic was thin, the fracture occurred through the solder. But as the interfacial intermetallic is thickened, the fracture propagated along the intermetallic/solder interface.

Sn-Bi-X(X:2Cu, 2Sb, 5In) 계 땜납과 Cu 기판과의 계면반응 및 기계적성질에 대하여 고찰하였다. Cu판과 땜납의 접합부는 $100^{\circ}C$에서 60일까지 열처리하여 광학현미경, SEM, EDS,분석을 통하여 시효처리에 따른 미세조직과 계면반응을 분석하였으며, 인장강도 및 연신율은 제조된 시편을 30일까지 열처리 한 후 0.3mm $\textrm{min}^{-1}$로 인장하여 시험하였다. 미세조직 분석결과 Cu의 첨가로 미세조직이 미세화 됨을 알 수 있으며, 계면에 형성된 화합물은 첨가원소에 따라 다르게 나타났다. 인장시험 결과 열처리 초기에는 땜납쪽에서의 파괴가 발생하였으나 열처리 시간이 증가하면서 계면반응층고 땜납의 계면에서 파괴가 발생하였다. 열처리에 따른 인장강도는 Cu를 첨가한 경우에 가장 높은 값을 나타냈다.

Keywords

References

  1. J. of Electron. Mat. v.21 Z.Mei;J.W.Morris
  2. IEEE Trans. Comp. v.13 M.Harada;R.Satoh
  3. J. Electron. Mater. v.23 M.McCormack;S.Jin
  4. J. of Metal. v.44 L.E.Felton;C.H.Raeder;D.B.Knorr
  5. 대한금속학회지 v.33 no.8 이경구;이재진;이도재
  6. Binary Alloy Phase Diagrams ASM. v.1 B.M.Thaddeus;L.M.Joanne;H.B.Lawrence;B.Hugh
  7. J. Electron. Mater. v.23 T.P.Vianco;P.F.Hlava;A.C.Kilgo
  8. J. Electron. Mater. v.16 D.Frear;D.Grivais;J.W.Morris
  9. J. Electron. Mater. v.23 W.Yang;R.W.Messler;L.E.Felton
  10. JOM. v.23 G.Ghosh;M.Loomans;M.E.Fine
  11. J. of Electron. Mat. v.23 P.T.Vianco;P.F.Hlava;A.C.Kilgo
  12. Binary Alloy Phase Diagrams ASM. v.1 B.M.Thaddeus;L.M.Joanne;H.B.Lawrence;B.Hugh
  13. J. Appl. Phys. v.38 B.F.Dyson;T.R.Anthony;D.Trunbull
  14. Metall. Trans. A. v.25A D.R.Frear;P.T.Vianco