Synthesis and Properties of In-situ $MoSi_2$/W Composites

$MoSi_2$/W 복합재료의 합성과 성질에 관한 연구

  • Jang, Dae-Kyu (Korea Institute of Geology, Mining and Materials) ;
  • Abbaschian, R. (Department of Materials Science and Engineering, University of Florida)
  • 장대규 (한국자원연구소, 자원활용.소재 연구부) ;
  • Published : 1998.10.01

Abstract

$MoSi_2$/W composites were fabricated by vacuum hot press at $1600^{\circ}C$ under 30MPa for 3 hrs. The effects of the amount of tungsten in the composites was explained in terms of the microstructure and mechanical properties. Although tungsten was mainly substituted to Mo atoms forming a complete solid solution of (Mo.W).Si, (x= 1, 5, y=2, 3). the grain size of composites became smaller with the increase of tungsten added. Vickers hardness was increased with the increase of tungsten content due to the solid-solution hardening. On the other hand, toughness of composites decreased sharply by increasing the amount of tungsten. Optimum tungsten amount was determined to be a 10 vol% of composite. Indentation fracture toughness was calculated to be 4.5MPa\sqrt{m}$ in this composites, compared with $2.7MPa\sqrt{m}$ in pure $MoSi_2$.

$MoSi_2$에 W분말을 첨가하여 $MoSi_2$/W 복합재료를 $1600^{\circ}C$에서 3시간 동안 유지하면서 30MPa의 조건하에서 고온진공 가압기를 이용하여 제조하였으며, 텅스텐 분말의 첨가량이 $(Mo)Si_2$의 미세조직과 기계적 성질에 미치는 영향을 조사하였다. 텅스텐은 몰리브덴과 치환하면서 고용체 합금을 이루었으며, 입자의 크기는 텅스텐 분말의 첨가량이 증가할수록 감소하였다. 비커스경도는 텅스텐 분말의 첨가량이 증가할수록 향상되었으나, 반면에 압흔파단 강도는 오히려 감소되었다. 10%정도의 텅스텐 분말을 첨가하였을 때, 압흔파단 강도가 $4.5MPa$\sqrt{m}$로서 순수 $MoSi_2$$2.7MPa\sqrt{m}$에 비하여 향상되었음을 알 수 있었다.

Keywords

References

  1. J. Mater. Sci. v.11 J.L.Chermant;F.osterstock
  2. J. Mater. Sci. v.7 P.Hing;G.W.Groves
  3. Mater. Sci. and Eng. v.A155 William J.Boettinger
  4. Journal of phase Equilibira Gokhale,A;G.J.Abbaschian
  5. J. Mater. Sci. v.25 K.Kmura;M.Nakamura;T.Hirano
  6. Kanthal Super Catalog Kanthal
  7. Materials Science and Engineering v.A1559 R.B.Schwarz;S.R.Srinivasan;J.J.Petrovic;C.J.Maggiore
  8. Scripta Materialia v.34 no.8 D.E.Alman;R.D.Govier
  9. J. Am. Ceram. Soc. v.79 no.7 I.J.Shon;Z.A.Unir;K.Yamazaki;K.Shoda
  10. Mater. Sci. and Eng. v.A149 Seetharama C. Deevi
  11. Mater. Sci. and Engi. v.A144 L.Xiao;Y.S.Kim;R.Abbaschian
  12. Acta Metall. et Mater. v.42 D.A.Hardwick;P.I.Martin;R.J.Jerina
  13. Scripta Metall. et mater. v.28 D.E.Alman;N.S.Stoloff
  14. Scripta Metall.et mater. v.31 D.E.Alman;C.P.Dogan
  15. Proc. of the Second Pacific Rim International Conference on Advanced Materials and Processing A.Gomez;H.F.Wang;H.Doty;R.Abbaschian
  16. Master'sTheses, University of Florida Dept.of Materials Science and Engineering A.Gomez
  17. Certif.255221 Synthesis of refractory Inorganic Compounds Merzhanov,A.G.;Borovinskaya,I.P.
  18. Mat. Res. Soc. Symp. Proc.194, San Francisco,CA J,M.Yang;S.M.Jeng
  19. J. Am. Ceram. Soc. v.74 Arun K.Bhattacharya;John J.Petrovic
  20. J. Am. Cer. Soc. v.68 Frank D. Gac;John J. Petrovic
  21. Ceram. Eng. Sci. Proc. v.8 W.S.Gibbs;John J. Petrovic;R.E.Honnell
  22. Mat. Sci. Eng. v.A155 J.J.Petrovic;A.K.Bhattacharya;R.E.Honnell;T.E.Mitchell;R.K.Wade
  23. J. Am. Cer. Soc. v.75 Arun K. Bhattachary;John J. Petrovic
  24. Ceram. Eng. Sci. Proc. v.12 J.J.Petrovic;R.E.Honnel;T.E.Mitchell
  25. Acta Metal. Mater. v.39 T,C,Lu;A.G.Evans;R.J.Hecht;R.Mehrabian
  26. J. Mat. Sci. v.27 J.Besson;M.Degraef;J.P.A.Lofvander;S.M.Spearing
  27. Trans. Faraday Soc. v.19 A.L.Norbury
  28. Proc. Symp. on Intermetallic Composites Ⅲ v.350 L.C.Chen;D.Brooks;R.J.Lederich;W.O.Soboyejo