분쇄처리가 Nd-Fe-B계 ingot의 자기적 특성에 미치는 영향

The Effect of Mechanical Grinding on the Magnetic Properties of Nd-Fe-B Ingots

  • 황연 (한국자원연구소 활용연구부) ;
  • 김택수 (한국자원연구소 활용연구부) ;
  • 이효숙 (한국자원연구소 활용연구부)
  • Hwang, Yeon (Minerals Utilization & Materials Division, Korea Institute of Geology, Mining & Materials) ;
  • Kim, Taek-Soo (Minerals Utilization & Materials Division, Korea Institute of Geology, Mining & Materials) ;
  • Lee, Hyo-Sook (Minerals Utilization & Materials Division, Korea Institute of Geology, Mining & Materials)
  • 발행 : 1998.11.01

초록

$Nd_5Pr_7Fe_{82}B_6$$Nd_{12}Fe_{82}B_6$ 조성의 1차 용유된 ingot에 대하여 기계적 분쇄처리 및 열처리를 행하고 결정구조 및 자기적 특성을 측정하였다. Ar 분위기 하에서 330시간 분쇄처리한 결과 $2~3\mu\textrm{m}$크기의 입자가 얻어졌으며, x-선 회절도로부터 각 입자는 미세한 결정립으로 구성되어 있음을 알았다. 330시간 분쇄처리된 분말을 $600^{\circ}C$에서 2시간 열처리함으로써 항자계가 18.36-18.79kOe, 최대에너지적이 8.32-8.38 MGOe인 자기적 특성을 얻었다. 열처리 온도가 높아지면 자기적 특성이 향상되었으나, 기계적 분쇄처리에 의한 ingot의 미세결정화 과정이 최적의 자기적 특성을 얻는데 더욱 중요하였다.

Mechanical grinding and subsequent annealing were applied to the $Nd_5Pr_7Fe_{82}B_6$ and $Nd_{12}Fe_{82}B_6$ ingots, and the crystal structure and magnetic properties were investigated. After 330 hours milling, the particles with $2~3\mu\textrm{m}$average size were identified to be composed of very fine crystallites judging from the x-ray diffraction patterns. The intrinsic coercivity of 18.36 ~ 18.79 kOe and the maximum energy product of 8.32-8.38 MGOe were obtained by the annealing of the milled powders at $600^{\circ}C$ for 2 hours. Annealing at a higher temperature resulted in the improved magnetic properties. However it was revealed that the control of the micro-crystallites formed during the grinding process was more important to get an optimized magnetic properties than the annealing condition.

키워드

참고문헌

  1. J. Appl. Phys. v.55 M.Sagawa;S.Fujimura;N.Togawa;H.Yamamoto;Y.Matsuura
  2. J. Appl. Phys. v.55 J.J.Croat;J.F.Herbst;R.W.Lee;F.E.Pinkerton
  3. J. Appl. Phys. v.57 N.C.Koon;B.N.Das;M.Rubinstein;J.Tyson
  4. J. Appl. Phys. v.57 C.Abache;H.Oesterreicher
  5. IEEE Trans. Magn. v.MAG-21 R.W.Lee;E.G.Brewer;N.A.Schaffel
  6. J. Appl. Phys. v.62 J.Wecker;L.Schultz
  7. Appl. Phys. Lett. v.43 C.C.Koch;O.B.Cavin;C.G.McKamey;J.O.Scabrough
  8. J. Appl. Phys. v.72 T.Harada;T.Kuji
  9. 日本應用磁氣學會誌 v.19 T.Kato;T.Ohno;T.Huruya
  10. J. Mater. Sci. Lett. v.8 T.Nakamura;A.Inoue;K,Matsuki;T.Masumoto
  11. Mater. Lett. v.4 H.H.Stadelmajer;N.C.Liu
  12. Appl. Phys. Lett. v.48 K.Gudimetta;C.N.Christodoulou;G.C.Hadijipanayis
  13. Mater. Sci. Forum v.88-90 A.Calka;J.S.Williams
  14. Mater. Sci. Eng. v.A134 A.Calka;A.P.Radlinski
  15. J. Magn. Magn. Mater v.54-57 R.K.Mishra
  16. J. Appl. Phys. v.67 T.Harada;T.Ando;R.C.O'Handley;N.J.Grant