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Abstract

A screening procedure, where one or more correlated variables are used for
screening, is reviewed from the point of statistical hypothesis testing. Without
assuming a specific probability model for the joint distribution of the performance
and screening variables, some principles are provided to establish the best
screening region. Application examples are provided for two cases; 1) the case
where the performance variable is dichotomous and 1) the case where the
performance variable is continuous. In case i), a normal model 1s assumed for the
conditional distribution of the screening variable given the performance variable. In
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case 1), the performance and screening variables are assumed to be jointly
normally distributed.

1. Introduction

Due to the recent advances in inspection systems and the increasing
requirements of the marketplace, 100% inspection (screening) becomes very popular
at one or more stages of a manufacturing process. In a screening procedure, every
item 1s Inspected with one or more screening variables. The screening variable
may be the major quality characteristic (performance variable) of the item itself or
a surrogate variable which is highly correlated with the performance variable. In
many practical situations, screening is performed with a surrogate variable. There
have been a number of studies concerning the screening procedure. The previous
works on screening may be classified into two groups: i) those which aim at
attaining a target outgoing quality after screening and ii) those which aim at
minimizing the expected cost relevant to screening. The former includes Owen et
al.(1975), Owen and Boddie(1976), Owen and Su(1977), Li and Owen(1979), Haas et
al.(1985), Wong et al.(1985), Boys and Dunsmore(1986, 1987), Turkman and
Turkman(1989). The latter includes Riew and Bai(1985), Tang(1987,19884,1988b),
Moskowitz and Tsai(1988), Tang and Tang(1989), Bai et al.(1990), Kim and
Bai(1990, 1992), Bai and Hong(1992), Bai and Lee(1993). For more detailed
literature review, see Tang and Tang(1994) and see Bai and Kwon(1995), Bai et
al.(1995), Boys et al.(1996), Kwon and Bai(1996), Bai and Kwon(1997), and Hong
et al.(1998) for recent works.

When a correlated variable used for screening, there will be two types of
misclassification if the correlation is not perfect; 1) rejection of a conforming item
(type | error) and ii) acceptance of a nonconforming item (type II error). While
the economic models attempt to minimize the total expected cost by balancing
these two errors economically, the other models aim at attaining a desirable level
of the outgoing quality. In this article, we review the screening problem from a
slightly different point of view. We take screening as testing whether an item is
conforming or not and find the best screening region. This approach provides a
pretty general tool to analyze the screening problem. Whether the performance
variable is continuous or dichotomous, it may be applicable consistently.
Attainability of the target outgoing quality of a screening procedure can be
decided in advance.
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In Section 2, we present a procedure for screening without assuming any
specific probability distribution for the performance and screening variable. In
Section 3, we consider the case where the performance variable is dichotomous
and the screening variable is continuous. The screening variable given the
performance variable i1s assumed to be normally distributed. In Section 4, we
consider the case where the performance variable is continuous. The performance
and screening variables are assumed to be jointly normally distributed. For given
values of the correlation coefficient, the maximum proportions of conforming items
attainable by screening are also provided when only one screening variable is
used.

2. Screening Procedure

Let Y be the performance variable of an item. An item is considered to be
conforming if the measured value y of Y for that item belongs to a prespecified
set S,. When VY is difficult or expensive to measure directly, one or more
surrogate variables are often used to decide whether an item is acceptable or not.
The surrogate variables are usually highly correlated with the performance
variable. We will call the surrogate variable the screening variable and denote a
set of the screening variables by a random vector X. Then the screening
procedure can be described as follows:

i) For every incoming item from the manufacturing process, obtain the
observed or measured value x of X.
ii) Accept the item with x<S,. Any items with x¢ S, are rejected.

In the previous works, many authors consid_ered the problem to find the set S,

such that the proportion of conforming items can rise from the current level
y = P(YeS,) (1

to a predetermined higher level & after screening. Thus, the design problem of a
screening procedure is to find S, satisfying

8 = P(YeS, | Xe8,). (2)
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We consider here the screening problem as testing
Hy: ve S, versus H,: y¢ S,

statistically. In a screening procedure, there can be two types of errors as in the
statistical hypothesis testing: a conforming item may be screened out (type I
error) or a nonconforming item may be accepted for the next process or shipment
(type II error). To achieve the objective of screening, these errors must be
minimized. However, it 1s not possible to reduce these two errors at the same
time and we need to find a reasonable screening procedure for practical use. For
development of a procedure which attains the aimed result of screening, we
employ some definitions similar to those in the statistical hypothesis testing.

Definition 1. A screening region of size « is defined as the set C, such that
an item with the observed value of the screening variable belonging to this set is
screened out (rejected) with the probability of type I misclassification error
P(XeC,| YeSs,)=a

Definition 2. C," is called the best screening region of size a if

i) P(XeC,|YeS)=a

i) P(XeC,"| Y¢S,)=P(XeC,| Y¢S,) for any other screening
region C, with P(Xe(C,| YeS5§,) = a.

Based on these definitions, we construct the following lemma and theorem which

can be used to find the best screening region.

Lemma 1. Let p(x| YeS,) and p(x| Y€ S,) be the conditional probability
density functions of x, given YeS, and Y€¢S,, respectively. Then C," is the

best screening region of size a if

& p(x| Y&S,) <k for all x=C,",
W (x| Y&S,) =k, for all x¢C,",

iii) P(XeC,"| YeS,)=uqa, for some k> 0.

See Appendix for proof of Lemma 1.
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Theorem 1. The best screening region of size is of the form

C,” = {x:P(YeS, | x)<q} (3)
where (0 <g<1) is a number satisfying P(XeC," | YeS5)) = 0.
Proof) From Lemmal, C," = {x :p(x| YeS,)/p(x| Y¢ S,)<k}. But we have

(x| YeS,) _ p(YeS, | x) o L= <
px| Y&S,) 1-p(YeS, | x) y

which can be reduced to P(Ye S, | x)<gq, where g = (ky)/(1—r+ky).

The conditional probability P(Y e S, | x) is the probability that an item will be
conforming given the observed value of the screening variable for this item is
X=x. When all the parameters of the distribution of (X,Y) are known,
P(YeS, | x) depends on x only. Thus, if we denote P(Y =S, |x) by h(x), the
best screening region C,° is determined by #(x) and o. If x&C,", then h(x)
is the probability that an item accepted by screening based on C,* is conforming.

Often, we may want the outgoing proportion of conforming items to be equal to
or greater than a prespecified value ¢ after screening. In this case, we choose the
screening region

C," = {x:h(x) <8}, that is, S, = {x: h(x) 26}. (4)

This, however, is not always possible since there may be cases where
sup h(x) < 8. It will be discussed in Section 4.
X

3. Case with Dichotomous Performance Variable

Suppose that the performance variable Y is a Bernoulli random variable, that is,
the item is conforming if y=0 and nonconforming if y=1, and its probability
function i1s given by
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P(Y=y)=(—y)y"" y=0,1. (5)

Assume that the screening variable X is continuous and 1its conditional
distribution given Y =i is N(g,;, 0°),i=10,1(g,< ;). Here, we consider normal

model only and assume an equal variance for simplicity. We obtain
h(x) = P(Y=01x) as

?’exp[— S —s)” ,/j())z ]

n(x) = ; 20 | ; 6)
exp| — (J’C_(l(]) ]:(l_ ) ex [_ (x—m)
7 20 77 exp 20

Let @(.) be the standard normal distribution function and Z, = ® '(1—a). Then,

the best screening region of size 1s obtained as

N O . N o a(l—17)
C, {x 5 P In Z0=2) Sx}, (7)

¥ My~ My #o Ty
1_yexp” 2 ){ 5 +Zao}]

1+——7—exp[( Rl )[ ot +Z[,a]]

where g = . By replacing ¢ with ¢

11—y o 2
in the best screening region of (7), the prespecified outgoing quality & can be
attained. In this case, the probability of type I misclassification error is obtained
by

¢ = 1—@( gt — el i%*g) (8)
Example 1. Consider a nozzle that is incorporated into a fuel injection equipment.
Its major quality characteristic (performance variable) is whether or not it sprays
the fuel properly so that the injection equipment can function well. To observe the
performance variable, the injection equipment may be tested after installing each
nozzle. But this may require a time-consuming work and may be costly. Instead
of observing the performance vanable, the amount of air flow through the nozzle
(screening variable) is measured in liters per minute. Assume that the conditional
distribution of the screening variable given the performance variable is normal

with distribution parameters =10, p,=13, and ¢=1. Suppose that the proportion
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of conforming items is y=0.8 before screening and is desired to be §=0.975 after
screening. Using formula (7), we obtain the best screening region C,”=[10.74, o).

Thus, any item whose observed value of the screening variable is greater than or
equal to 10.74 is screened out (rejected).

4. Case with Continuous Performance Variable

Assume that both of the screening vanable X and the performance variable Y
are continuous and have a joint distribution N(gu,, g,, o, O'f, p) with positive
correlation coefficient. The specification limit of Y may have one of three forms;
i) S,=[L,00), i) S,=(~o, U] and iii) S,=[L, U]l. Let V=(X—p,)/o,,
W= (Y—pu)lo,, wy=(L—p)/0,, w,=(U~pg,)/06, and S, be the specification
limit of W which corresponds to S,. Then V and W have a joint distribution
N(0,0,1,1, p). Since W, given V= v, is normally distributed with mean pv and

variance (1—p0%), £(v) is given by

I

(v) 1—@(7“’—1;—"3), if S,= [w,, )

1-p*

a><—:/”ll—’i’i), it Sy= (— o0, w,]

1-0°
_ Wy — PV w;— pv . _
N m( V10" ) (D( V1-¢ ) it Sy= o, w. )

Note that %(w) is i) an increasing function of v when S, =[w,;, o), ii) a decreasing
function of v when S,=(—o, w,], and iii) a unimodal function of » with its

maximum value

* W, — Wy
h = 20 - 10

0 = 20{ ) = 10

at v=0v"=(w,+w,)/(2p) when S,= [w,, w,]. Thus, the best screening region
is of the form (—oo, ;] if S,=[w;, ©), or [vy, o) if S,= (-0, w,], or

(=00, v ]Ulvy, ) if S,= [w,, w,]. Suppose that the proportion of conforming
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items is desired to be greater than or equal to § after screening. The screening

region based on V is

C, = {v:v<y,), if S, = [w, ),
={viv=vu,}, if S,=(—-c,w,],
={viv<vy, or v=v, }, if S,= [w,, w,1, 11D

where v,= (w, = ZsV 1—0%)/p, v, = (w, + Z;V 1—p%)/ o, and v, and v, are two

values of v satisfying 4(v) = 8. The type I misclassification error of the procedure is

o = —1y{a>(v,>— W(v,, wi o)), if S,="lw,, ),
= —ly{y— (v, w 0)), if Su=(—o,w,],

= —ly{r— (v, ,w, )+ v, w;0)+ (v, w,; 0) — (v, w; )},

if S,= lw,, w,], (12)

where ¥(.,.;p) is the bivariate standard normal distribution function with

correlation coefficient p. The screening region based on X is

CL":{x:xgxl}y lf Sy:[L,OO)’
={x:1x2x,}, if §,= (-0, U],
={x:x<x, or x=>x,}, if S,= [L, U], (13)

where x,= u,+ ov;, x, = p, +ov,, x,) = p.+ ov,) and x, =y, + ov, .
If S,=1lw,;, w,], the target proportion ¢ can be attained only when #(v")=4.
In this case, h(v") is the maximum proportion of conforming items attainable by

screening. <Table 1> shows #(2") for p= 0.50(0.05)0.95 and y= 0.80(0.05)0.95.
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< Table 1 > k(v") for o= 050(0.05)0.95 and = 0.80(0.05)0.95

oy 0.80 0.85 0.90 0.95

0.50 0.860 0.904 0.943 0.976
055 0.875 0.915 0.952 0.981
0.60 0.891 0.928 0.962 0.986
0.65 0.908 0.942 0.970 0.990
0.70 0.927 0.956 0.979 0.994
0.75 0.947 0971 0.987 0.997
0.80 0.967 0.984 0.994 0.999
0.85 0.985 0.994 0.998 1.000
0.90 0.997 0.999 1.000 1.000
0.95 1.000 1.000 1.000 1.000

Example 2. Consider an electronic device whose major quality characteristic Y is
the voltage at an internal point. The lower specification limit of the performance
variable Y is 8 volts. Instead of measuring Y, we may use the voltage X at an
external point which is easy to measure. X and Y are known to be approximately
normally distributed with #,= 8 volts, g,= 10 volts, g,= 0,= 2 volts, and p=

0.90. Suppose that the proportion of conforming items after screening is specified
to be &= 0.975. Since w,= (8-10) / 2=-1, §,=1[-1, o). Using (11), we obtain
C,'= (-0, -016] and thus, C,”= (-co, 768]. Every item with x<7.68 is
screened out.

5. Concluding Remarks

The screening procedure is reviewed as a statistical hypothesis testing
procedure. Without assuming a specific probability model for the performance and
screening variable, some principles are provided to obtain the best screening
region. It provides a pretty general tool to analyze the screening problem.

The procedure may be applicable consistently regardless of the type of the
performance variable. Attainability of the target outgoing quality of a screening
procedure can be decided in advance. Cases of both dichotomous and continuous
performance variables are studied assuming normal probability model with known
parameters. Examples are also provided for illustration.

The result shows that each screening procedure may be properly converted to a
corresponding test procedure. This may enable us to employ the existing theory of
statistical testing in solving some screening problems.
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Appendix

Proof of Lemma 1.
Let C,” be the screening region satisfying i), ii), and iii) of Lemma 1 and C,

be any screening region of size . We must show that
P(XeC," | Y¢S)2P(XeC, | YES,)

to prove C,” is the best screening region of size a. We will prove only for the
case where p(x| Y=S,) is continuous. The discrete case can be proved similarly.

Denote the complements of C,” and C, by C,” and C,°, respectively. Then

P(XeC," | Y¢5,)~ P(X=C, | Y¢S,) = [p(x | Y¢S, dx— [p(x | Y&S,)dx

C.\ (’ X

— [z Ye¢S)da+ [p(x) Y¢S, dx— [p(x| Y¢S,)dx— [p(x | Y¥S,)dx
C,NC, CNG, c.ne,” C,NC,*

= [p(x) Y¢S dx— [ (x| Y#S,)dx

c,'Ne, C.NC,e

> [zl vesyde- [+ px| ves,)dx

C,"NECe c,NeC,™

= 5[ [ox1 vespast (o) ves,)ds— [p(x1 Yes)di— [p(x] Ye$,)di]

o atol c,'Nc; c.Ne,” C.NC,

= —}e[ft)(z | YeS,)dx— fp(zc | YESy)a’zc]

C, Cs

= I

[a—a]

i
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