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Animation of AVP and DAV for regression diagnosticsl
Sung H. Park, Jae J. Xim, and Sung H. Chung?
Abs’ract

Since 1960s, in which the computer graphics system first appeared, various
graphical techniques have been introduced for regression diagnostics and they have
been remarkably developed. In particular, animation, one of the dynamic graphical
methods which Cook and Weisberg (1989) proposed helps to show the effect of
adding variables or observations to a model, or removing them from a model on the
regression results. We present the added variable plots (AVP) with animation, which
can be used as an optical tool of understanding the affect of some variables or
observations on other variables, and the detrended added-variable plots (DAVP) with
animation, through which it is possible to find out whether specific variables or
observations have an effect on the nonlinearity of other variables or not.

1. Introduction

Graphics in statistics have become an essential part since Frobes (1857) introduced its
concept. Expressly, the appearance of the computer graphics system in the 1960s marked a
turning point in the statistical methodology, resulting in a remarkable leap of the graphical
techniques (see Becker (1981) and Cleveland (1987)). Various methods for dynamic graphics,
such as identification, linking, deletion, scaling, brushing, rotation, and animation are the
products obtained by using its rapid computation to the best advantage. Dynamic plots based
on these methods are useful in the sense that graphic is to show certain phenomenon in the
two or three dimensional space to be comprehensible in comparison with flat static plots.
Among dynamic methods, animation which was recently proposed by Cook and Weisberg
(1989), and developed by Park and Kim (1992), is particularly useful in understanding the
effects of adding variables or observations to a model or removing them from a model. The
reason is that these effects can be shown with smooth changes.

In this paper we focus on the added variable plots (AVP) and detrended added variable
plots (DAVP) with animation to study the impacts which some variables or observations can
have on the other variables. In Section 2, we will introduce the AVP and DAVP with
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animation when some variables or observations or both of them are removed. In Section 3,
one example will be given to illustrate the proposed dynamic graphics which can be useful for
regression diagnostics.

The program for the analyses of the example given in the paper is written using S-plus
package.

2. (Detrended) added variable plots with animation

To begin with, we introduce the AVP and the DAVP. Suppose that the full regression
model is
y=Xg+ Va+ ¢ (n
where y is an #nX 1 vector of observed response, X is an # X p fixed known matrix, V is
an # X 1 fixed known vector, 4§ is a pXx 1 vector of unknown regression parameters, ¢ is an

unknown scalar, and & is an # X1 vector of unobservable random errors whose distribution

is usually assumed N( 0,7 ¢*). By multiplying (1) by (J— Px), where Py is the projection
matrix of X, ie, Pxy=X(X'X) !X’ and noting the (/— Px) X =0, we can obtain

= ey.xat(I—Px) &
= ey.xate. ‘
Here e ,.x = (J—Px)y is the residual vector when 3y is regressed on X, ey.x=

€y

= y.x

(I— Px) V is the residual vector when V is regressed on X, and e is the residual vector
of the full model, that is, when y is regressed on (X, V). The plot of e ,.x versus
ey.x is called the AVP or the partial regression plot (see Cook and Weisberg (1982),
Chamber (1983), and Chatterjee and Hadi (1989)). Here e y.x is related to the systematic

component, orthogonal to e, which determines the scatter.

On the other hand, it is possible that an undue linear trend in the AVP should visually
mask the defects in the form in which V enters the model (1), which includes nonlinearities
and outliers. Giving a full explanation, suppese that the true model is

y=XB+Va+ U+ ¢
where U is a model component which is unknown and nonstochastic. Then E( e ..x)
can be decomposed into two orthogonal parts
E( _e_\-vx> = ey.xat+t@xU
= Lv.x a/’ + QU
e’ V. XU

where Qx=1I—Px,Q=I—Pxv), and & =a+ —— 7.
Il ev. xll
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2y.
Here P (x vy is the projection matrix of (X,V) and ”—;V—X”- is the part of V
=Vv. X
orthogonal to X, normalized to unit length. Precisely the expected slope of the AVFP is o'
under this model and QU is the only part of U which is probably distinct as a deviation

from the linear trend. Besides if QU is small relative to g y.x @', the potential for masking

of U may make the visual detection of U difficult. As one device of solving this problem,
the DAVP, { e, evy.x}, can be presented, which is obtained from removing the systematic
component from the ordinate of an AVP. Since E(g)= QU, often the presence of U is
detected without difficulty after detrending (Cook and Weisberg (1989)).

In Section 2.1, we will study the impacts of removing some variables on the other
variables remaining in the model with the animated - AVP or DAVP. Analegously, in
Section 2.2, the animated A VP(DAVP) will show the effects of removing some cbservations
on the specific variable in the model dynamically. In Section 2.3, we will also think over joint
impacts of removing variables and observations smoothly on the other variables through the
AVP(DAVP) .

2.1 Animated AVP(DAVP) in omission of multiple variables

First of all, we consider the case of omitting a variable smoothly. Assume that X;:
nx(p—1) matrix, Xy:mx1 vector, V:imx] vector, B;:(p—1)X1 vector. Under these

conditions, the full model can be partitioned and modified as

¥y =X\8+ X5+ Vo+te
=X 81+ X8+ 70"+ ¢
=XB"+V6+e
=ZB8 +e

— QIXZ _ QI,ZV _ . T 1 wr s, )
Xo=ToxT V-Toigm X-(XiX), z=(XD, BU=(8. 8,

where

8= (BY, 8). X, is the part of X, orthogonal t0.X; and V is the part of V

orthogonal to (X, X3).

bisa (p+1)X1 vector of zeros except for a single 1 corresponding

to X,. For 0< A<1 we get B(A), the estimate of 4° (Park and Kim (1995))
And as X, is omitted smoothly, the fitted values can be obtained by

Suppose that

When X, is removed from the model smoothly, the projection matrix or prediction matrix
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¥ =ZBW)
=X (X, X)X v+ (1= DX X9+ VY
=1 +1=-D (- 3())+ (W) -3
= y—A(3- (D).

B =(Z'z+ A5 060720y

[(Xl’XO_le'.Y

(I—A)Xz’_y
V'y

for X is formed by

Pr(d) =X(X "X+~ byby) X

1—-4
_x (XX 0 L0 0 'y
N
—(x, %) X0 0 )
(X 2)( 0 1—,1) Xy

=PX1+(1_/DX2}\{21

where by is a pX1 vector of zeros except for a single 1‘ corresponding to X,. Here we
note that X,X,=Px— Py, and X,X)y= yx— _QXI. On this occasion Px(4) can be
rewritten simply with Px and Py , and also _/QX(/{) can be represented with K% x and K% X,

as follows.
PX(/D:PX _A(PX_PX,)
and
&X(/l) =PX(/D_Y
= yx— A(¥x— ¥x,)
where _/L;X is the fitted vector of ¥ on only X and similarly 3 x, is the fitted vector of
vy on only X;.
Going on a step ahead, we can consider removing multiple variables simultaneously. The
modified full model is (Park and Kim (1992))
Yy =X1£1+ U161+ + Uq6q+ VH"‘_E
=X 81+ U814+ U0+ V6 + &
=XB"+ V0 +e
=ZB +¢
Qx U Qx, oo U Q O T
where Dy = T Uo™ oy e e Ol 7= T o o
X, Y1 X O U \Ya QX..U‘.?--. UTV“
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X=(X,, UI,
Ty Uq)y Z= (X19 Uly“‘) @49 ’V)r ﬁ*’=(_3;”’ 3;,'“,6:;6m), B$’=(£T,,8T,"‘,8:). Here

Z is an nX (p+ ¢) matrix and X is an uX (p—1+¢g) matrix.
When Uj,-+,U, are removed with the different rates, namely, A;,:,4,, for 0<A;<1,

i=1,2,--,q, B(A) becomes

’ /12 ’ /1{7 =1
B = (ZZ+1 Aﬁb1+7:gb¢2+ oA beb) T2y
(Xl ’Xl) X.I'Y
(1 e /11) Ul'y
(1-20, ¥
V'y
In this case, &;, (i=1,2,-,¢), is a (p+¢) X1 vector of zeros except for a single 1
corresponding to U;. For simplicity, assume that the smoothly omitted rates of U, -+, U, are
all the same, that is, A;=+-= A,= A. Then for 0<A<I, B(A) and ¥(1) can be rewritten
simply as
B =(ZZ+ A5 by A boby + -+ A b )2y
(Xl'X1)—1X1,_Y
(1— /1.) Uy
(1-DT,»
V'
and

) =ZBW)
=X (X, X) ' X v+ Q- D00 v+ + (1 -D 0,09+ V7w

=2 +Q-D(I—- 3D+ (D— 2y
= y—A(y— ().

Assuming that by, is a (p—1+¢) X1 vector of zeros except for a single 1 corresponding
to U; and noting that U4 U, ++-++ 0,0, =Px — Px, and (U0, ++ U, 0, )y =
Yx—3x, Px(d) can be represented only by Py and P X,

Px(d) =X(X'X+ A_llebX, + - +——-—_lzX bx)TIX

=Py +(1— A)(U U+ + Uqu)
=Py —A(PX'—PX,)
And also vy (A) can be computed only through vy, the fitted vector of ¥ on X, and
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Vx,, the fitted vector of ¥ on Xj,

_/QX(/D = Px(D) ¥
= ¥x— A( ¥x- ix,).

Thus e(4), e,.x(A), and ey.x(A), residual vectors of ¥ on Z, ¥y on X, and V on

X, respectively, are as follows.

e(D) =y= Q)
=g+ A(y— y(1))
=e+Ae(l)— o),

e,.x(A) =y— x (A
= e,.x+tA( 3x— ¥x)
= _el“X“i"‘A( —e—.}."XI— _.e_y'X)r

and
gv-x(/l) =(I_PX(/D)V
=(I“‘Px+/1(Px""PXl))V

= eyv.xtA ev.x,— ev.x).

Therefore, we now can define the AVP (A) and DAVP (A1), the animated AVP and DAVP,

by
AVP(A) ={ e,. (/1) ev.x(D}
={ e, xtMe, x— 2:.x), ev.xtA( ev.x,— ev.x)}
and
DAVP(A) ={e(d), ev.x(D}
={_e+/1(e(1)— e) Evy. X+/1( £ev. X, eV~X)}.

As A increases from { to 1, we can see the two dynamic effects, the supporting and
the suppressing effect in the AVP (1) and DAVP (). Here ‘' X; supports X, means that
X, is significant in the presence of X;, while Xj; is not significant in the omission of Xj;.
Similarly ‘ X; suppresses X;’ means that X; is not significant in the presence of X, while

X, is significant in the omission of X;. For example, if V gets more insignificant as

Uy, --,U, are smoothly removed, U,--,U, support V. Conversely, if the smooth omission

of Uy,---,U, gives V more significance, V is suppressed by U,---,U,.

2.2 Animated AVP(DAVP) in omission of multiple observations
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First, we consider the case of omitting an observation smoothly which was well explained
in references. Let u; be the vector of zeros except for a single 1 corresponding to the z-th
observation. Then the modified mean shift model can be presented by

¥ =X, B+ ud+ Vote
=X1£i‘+ _‘7\4‘,'613‘*' ’T70$+_€_
=XB'+V6+¢
=ZB"+¢

~ __ QX—ui _ QX. E—V _ e ”__ .3 wr__ by =
where U= “Qxﬂt‘“ , = ”QX’ JZX"V” , X—(Xl-ﬂi)y l—(X 7), B _(.51 , 8);

and 8% =(B”, 6"). For 0<A<1, B(A) and (1) are obtained as

B =z z+ 1A pe) 2y
[ (Xl 'Xl)_le'y

A&i’y
V'

and

YA =ZBW) L
=X, (X' X)Xy vyt A ui v+ VY
=y—-A3—2QA=1).
Then we can easily show the animated projection matrix of X

Px(D) =X(X'X+5 A pbx) X
_ X/ X 0 o 0 W'y
‘X(( ) o 1—/1]] X
y

1
e 5 9%

AN\ %/

=PXI+/1L¢,'_M,".

Noting that iiﬁ;‘=PX(1)—PX1 and so zu;yv=vx(A=1) — ¥x, Px(A) can be

rewritten simply and vx(A) can be computed easily only through B x, and x (D),

Px(A) =PX,—A(PX,—PX(1))
and
./l;x(/‘) =PX(/1)_Y
= yx—AM yx,— ¥x(1).
We now take into account the case of removing multiple observations at the same time.
Suppose that be the set containing the indices of the mz observations to be omitted which

I={i}, iy, ", im}, m{(n—p)may be thought to be the last observations and
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Ur={ Ui, Uiy, _Z_t,-m} be the matrix containing the corresponding indicator variables. The

model is given and modified by

¥ =X1£1+ U1_8+ V6+_€_
=XB81+ U8 "+ V8 +¢

=XB+V0+e
=Z8 +e¢
where X=(X,,U), Z=(X, V), B"=(87.8"), 8" =(B",0%, and U;=(u, u,
N N Qx. o - %i; Qx, iz iV
“;ﬂim). Here J—/!I',‘= “QX_ _i‘x\:’ E‘L‘H“ y ]Sm and V= “QXI‘J;\-"J;:-V” .

Thus U, is the orthonormal basis orthogonal to the cclumn space of X;. For 0<{A<1 we

can obtain B(A) the estimates of B°

B =(Z'Z+ ————1;" BB)"'Z'y
[(XIIXI)_IXI’.Y

AU]’_Y

V'y
O) pXMm and 2(A) are fitted values in the smooth omission of 71 -th, -, ¢,,~th
I] mXm

where B= (

observations

WD =ZBA)
= Xl (X1 'Xl)_le’.Y+/1UIUI',Y+ VV’_Y

=3+ (2D - D+(32— D)
=y—A(3—3(1).

Noting that U,;U, = Px(1) — Px,, we obtain the animated projection matrix of X

where Bx=(?) (p;l}();;m
Px(2) =X(X’X+1%ABXBX’)"1X’
= PXX+I1U1U1'

= Px, — A(Px, — Px(1)).
And since U,U;/y=73x(1) — 3 x,, it follows that
¥x(A) =Px(Dy
=yx, — M¥x,— 2x(1)).

From these results, we can derive e(1), e ,.x(A4), and e y.x(A) the animated residual
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vectors
D) =v— ¥ _
=e+ A(y— ¥(1))
=e+ Me(l)— o),
e,.x(D) =y — 3x(A)
=_ei-xl+/1(§xl—.§x(1))
=e,.xtANe, x(D—e, x)
and

£ V-X(A) =(I—-Px(A)V
=(I= Px,+ A(Px,— PxX()) V

=ev.x,tMev.x(D—ev.x).

Thus the AVP(A) and DAVP(A) for smoothly removed observations are defined by
AVPQ) ={e .. x(A), e v.x(D}
={e, xTMe, xX(D—e,.x), ev.x, t Mev.(D—e v.x)}
and
DAVP(A) ={e(A), e y. x(D)}
={e+tMe(l)—2a), ev.x,+ Aev.x(1)—ey.x)}.

As A increases from 0 to 1, we can visually understand the effect of removing multiple

observations on a variable of interest with assistance of the AVP(A) and DAVP(A).

2.3 Animated AVP(DAVP) in simultaneous omission of multiple variables and
observations

In this section, we will concentrate upon the subject of the joint impact of the
simultaneous omission of variables and observations on the other variables in a regression

equation. The animated AVP or DAVP will be then a diagnostic device for helping to
detect the joint impact visually. .

We begin with the study of the effect of omitting one variable and one observation
smoothly. For this study, the following model is considered (Park and XKim (1995))

Y =X1&+X232+_Z16+ V0+§
=X, 81+ X B+ ud+ V0 +¢
=XB"+ Vo +e
=ZB +e
Qxl,)f;‘.zf.li Ve QXI,)?;',J;TV
Qx muill ' 7 NQx & VI

_ Ox Xy L
where XZ— ”QXlXZH’ U;=

X=(Xy Xy u,

Z=(XV), B"=(B87.8,8), B"=(B", 6). For (<A1 we can easily obtain
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B(A), animated estimates of B*', and 3(A), animated fitted values by

B =z z+ A b+ 15 b2y
(Xl’Xl)_lel.Y
(1-DX,y

Auiy

Vy

and

¥ =ZBW) L
=X (X' X)X v+ Q- D XX v+ daiu; v+ VVy

=9 +(1—AN3=-3,— VV R+ -2, - VV+ TVVy
= y—A(3—- 3(1).

If we direct our attention to the facts that  zm,u; = Px(1)—Px, and
XXy =Px(0)—Px,, it is easily derived that %;%;v=9x(1)— ¥x and

XX, yv=3x0)—23 x,- Using these, we get Px{(A), the animated projection matrix of X

Px() = X(X'X+72= by + 3454 by 7'X
=PX,+(1_A)XZXZ’+A?‘;£&;
=Py, + (1= A)(Px(0)— Px,) +A(Px(1) — Px,)
= Px(0) = A(Px(0) — Px(1)).

And the fitted values with animating parameter A is

_/Y\X(/D =Px(/1).‘z
= ¥ x(0) — A(2x(0)— 2 x(1)).

Now it is of interest to study the animated plots of showing the effect of removing
multiple variables and observations simultaneously. Suppose that the full model is
Yy =X8+Ué+,,+Ug,+Vo+ e
=X 8,+Ud+ Vl+e
where U= (U,---,U,) is an nXgq matrix of which column vectors are variables to be
deleted and &' =(6;,--,6,) is the 1Xg vector of their coefficients. Assuming that i,-th,

-+, 1,,—th observations are omitted, we obtain the mean-shift modified model
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Yy =X1£1+ U_8+ U[]‘*‘ VH+_€
=X1£;+ U_8$+ U]_‘Z$+ Vﬁf’+_§
=XB"+ V0 +e
=ZR +e
where U=(U,, -, U,) is the orthonormal basis to X, and Ur=(u,, ", u;) is the

orthonormal basis to X;, U and X=(X,, U, U), Z=(X, V), B"=(87.8",2"),
B8 =(By.6).
For 0<A<1 we estimate 8" by

B =z z+ 45 BB +154 BB 2y
(Xl ,Xl)_le’y
1-NDTy
/1171'1
Vy

And the animated fitted values are
) =ZBW) , ,
=X1(X1X1)—1X1_Y+(1 '_/1) EU’_Y’*'Aﬁ[ULY"' 7'77'1
=5+ A-DG3- 3, VTR +AD-3,- V'V + V7
=3y-a(3- ().

We note that UU’ = Px(0)— Py, and U,U; = Px(1)— Py . From this fact, we obtain

Py() =X(X'X+T2= By By + 272 ByBx) X’
= PX1+(1'—A) UU' + A Ulvl'
=PXl+(1_A)(PX(O)_PXX)‘FA(P)((I)‘_PXI)

= Px(0) — A(Px(0) — Px(1)).

Since UU v= yx(0) — .’Qx, and U707 y=2yx(A=1) — _,QX,,

_Qx(/i) =PX(/1)_Y )
= _YX(O) - /1(_YX(O) - .YX(D)
can be computed only through vx(0) and vx(1). Thus e(Q), e.,.x(A), and e y.x(A)

are derived into
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«D) =y— ¥
=¢+ A(y— 3(1))
= e+ Ale(l)— 2},

e,.x(A) =y — Yx(D
=e,.x(0) + A3 x(0) — 2 (1)
=_61-X(0)+/1(_€ _y-X(l)—_e I-X(O)),

and

evy.x(A) =(I—Px(ANV
=(I—Px(0)+ A(Px(0)—Px(1)) V
=e V.x(O) + Ae V.x(l)__e_ Vx(O)) .

e = ¢(0) from

Here it is noticed that e(A) can be computed simply from the residuals

the full model and ¢(1) from that of Uj,-'-, U, variables and i,-th, -, 7, ~th observations

removed. Likewise e ,.x(Ad) and e y.x(4) can be obtained without complicated calculations.

Thus we define the animated AVP and DAVP in the omission of multiple variables and
observations by

AVP(A) ={e . x(D), e y.x(} )
={e,. x(0)+Ae ;. xX(D—e,.x(0),ev.x(0) + Ae v.x(1)— e v. x(0))}

and

DAVP(2) e v.x(D}

{e(),
{etA(e()—2), ev.x(0) + Ae y.x(1)— e v. x(ON)}

As A increases from 0 to 1, the AVP(A) and DAVP(A) will show dynamically the joint

impacts of removing multiple variables and observations on a specific variable.

3. Illustrated example

Until now we presented AVP(A)and DAVP(A)as a graphical tool of understanding
dynamic effects of smoothly removing variables and observations separately or simultaneously
from a model on a specific variable.

In this section, we will illustrate an example to show how these dynamic graphical
methods can be applied in the practical aspects. As a device of obtaining the animated plots,
we developed a computer program using S-plus package. We analyze the artificial data in
Chatterjee and Hadi (1989) to detect the effect of omitting some variables on the other
variable. The data set consists of 20 observations and 6 explanatory variables, which is

presented in Table 1.
Table 1 Artificial Data
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No. x) Xy X3 X4 X5 Xg y
1 1 -1 0 1.95 1 -0.59 0.14
2 2 -2 0 362 2 0.06 3.03
3 3 -3 0 5.66 3 -0.30 311
4 4 -4 0 7.08 4 -0.42 3.42
5 5 -5 0 1041 5 -1.54 6.00
6 1 0 0 -0.26 -1 -0.06 -162
7 2 0 0 -0.32 -2 0.89 -0.92
8 3 0 0 0.62 -3 0.87 -0.07
9 4 0 0 -0.49 -4 4.16 0.63
10 5 0 0 -1.14 -5 431 0.43
11 0 1 1 -1.26 0 1.60 1.07
12 0 2 2 -0.53 0 1.85 192
13 0 3 3 0.15 0 296 3.36
14 0 4 4 0.03 0 439 3.9
15 0 5 5 -1.70 0 4.66 447
16 0 -1 1 ~-0.16 -1 -0.65 -347
17 0 -2 2 -2.29 -2 -2.31 -3.96
18 0 -3 3 -4.55 -3 -3.11 -4.68
15 0 -4 4 -3.75 -4 -2.68 -8.56
20 0 -5 5 -5.46 -5 -4.21 -9.99

The following model

y=F+ B xt+Psxsgte
is fitted to the data. Table 2 shows the variables by which each variable is affected in the

single or joint form.

Table 2 Influential relationship of variables in Artificial Data

Supported/ Supporting Variable (X; )

Suppressing Variable (X;)

Suppressed
Variable (X;) Single joint Single joint
Xy X X3, Xo X5, XX
X, X5 XsXs, X4 X5, X5 Xs
X, X1 X3, X1 Xy, X3Xs
X1, Xs  XuXs
X3 '
X, Xs X\ X5, X1 Xg, XoX5
X3X5, XX
Xs Xy X1 Xg, Xp X
X X1 X, X1:X3, X1 X,
X1, Xy, XoXs, XXy, XoXs

13

In Table 2, 6 variables can be roughly divided into 2 groups. One group is the set of
supported variables and the other is the set of suppressed variables. The former group
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contains X, X;, X5 and the latter contains X,, X, X3 is not affected by any variable.
Table 2 also shows that X, is supported separately and jointly by X, and X;, and Xj is
suppressed separately and jointly by X; and X,. However X, is supported only separately,
not jointly by X; and Xj5. X5 is supported jointly, but not separately by X, and Xg. Also
we note that X, is suppressed jointly, but not separately by X, and Xj.

Now we present the AVP(A) and DAVP(A) as an aid for better examining the data

structure in Table 1. Figures 1 and 2 show that X becomes significant as each of X; and
X, is removed smoothly. Also we can see in Figure 3 that the suppressed significance of
Xg 1s revived gradually as X; and X, are jointly removed with smoothness. Figure 4-6
display the opposite case, that is, one variable is supporting another. The omission of X, or
X has little effect on Xs. But X5 becomes less and less significant as X, and X are

jointly removed and after all, not significant. By looking into the DAVP(A) in Figure 7, we

can know that the linearity of X5 in the full model is not excessively trended.
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Fig. 1. AVP(Q) of X in omission of X].
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Fig. 5. AVP(A) of X5 in omission of Xj.
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Fig. 7. DAVP(A) of X5 in joint omission of X, and

Now we examine the joint effect of variables and observations on a specific variable by

smoothly omitting both variables and observations. When we first analyze the influence of

each observation on an individual variable according to the diagnostic statistics of ‘Dfbetas’,

the 18-th observation has the opposite effects on X and X,. Figure 8 displays that as the

18-th observation gets gradually deleted, Xs is losing the significance, that is,

X5 is

supported by the 18-th observation. On the other hand, we see in Figure 9 that X becomes

significant together with the omission of the 18-th observation, namely, X is suppressed by

the 18-th observation. Figure 10 and 11 show the joint effects of smoothly omitting X,; and

the 18-th observation on X5 and Xg. In the same manner that each of X; and the 18-th

observation supports X5, the joint of them also has the supporting power over X;. Likewise,

X, and the 18-th observation

suppress Xj in the joint form.
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Fig. 9. AVP(A) of Xg in omission of the 18-th observation.
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Fig. 10. AVP(A) of X5 in joint omission of X, and the 18-th observation.
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Fig. 11. AVP(A) of X; in joint omission of X, and the 18-th observation.
Remark. The S-program can be obtained from the authors on request.
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