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Some model misspecification problems for time series:
A Monte Carlo investigation

Dong-Bin Jeong!

Abstract

Recent work by Shin and Sarkar (1996) examines model misspecification problems
for nonstationary time series. Shin and Sarkar introduce a general regression model
with integrated errors and one system of integrated regressors and discuss the

limiting distributions of the OLS estimators and the usual OLS statistics such as 62,

t, DW and R% We analyze three different model misspecification problems through a
Monte Carlo study and investigate each model misspecification problem. Our Monte

Carlo experiments show that DW and R? can be in general used as diagnostic tools
to detect spurious regression, misspecification of nonstationary autoregressive and
polynomial regression models.

1. Introduction

Shin and Sarkar (1996) considered a general regression model with integrated errors and
one system of integrated regressors defined as follows:

Yt = BO+ BlXt’l + e +-BpXt,p+ Ut,k,t = 1, “ue ,n, (11)
where y is the regressand. The regressors are defined by_
Xt,j = Xl,j—1+ +Xt’j_1_]. = 1,2,... ,D,Xt,0=xt, (1.2

for a sequence {x:}. The regression error Ui is defined by

1) Full-time Lecturer, Department of Statistics, Kangnung National University, Kangnung, 210-702,
Korea.
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U i=Ujj-1+ ...+ Ugi-1,i=1,....k, Uy y=u,,

and p and k are the levels of integration and nonnegative integers. It is assumed that the
two processes {x:} and {u} have certain limiting behavior based on Assumption 1 given by
Shin and Sarkar (1996, pp. 4-5).

If each of the functions g and f in Assumption 1 (Shin and Sarkar, 1996) is a standard
Brownian motion, then this stochastic process holds with w: = x or wt = u under conditions
(Herrndorf, 1984 and Phillips and Solo, 1992) such as

Cl. E(W,)=0forallt,Sup E[W|™ < for some & > 2 ands > 0, o’=limE(w;+

+...+wy)?n exists and & > 0, {w is strong-mixing with mixing coefficients [/

satisfying ZW};Z/ o0 ; or

C2. w,= 20¢jet_,- where {e:} is an iid sequence with E(e)) = 0, E(e?) = ¢ < oo, ijquz
=

<oo and %= 0% 20¢,-)2 > 0.

If k = 0 in model (1.1) and x, = u,-; in (1.2), then model (1.1) becomes the autoregressive

model of order p, AR(p),
V= ¢+ gl¢th—j+ut, (1.3)

where ¢;'s are linear combination of B;'s whose characteristic roots are all one. Similarly, if

k = 0in (1.1) and x = 1 in (1.2), then (1.1) becomes the polynomial regression model
vi= 6+ zléjtj/j! +u,, (1.4)
&

where 0;'s are linear combinations of g;’s.

Section 2 presents the basic asymptotic results of parameter estimates and the usual OLS
statistics, which are applied to subsequent Sections 3-5. Spurious regression problem is
discussed in Section 3 and misspecification of nonstationary AR and polynomial regression
models is considered in Section 4. Section 5 discusses under—specification of orders in
nonstationary AR and polynomial regression models. In each Section 3-5 we consider a
Monte Carlo study regarding the model misspecification problems. We generate 10,000
samples of size n for n = 25, 50, 100 and 250. For a fixed sample size n, the corresponding

empirical means of parameter estimates, 62 and other conventional regression statistics such as

t-statistics, R? and DW are considered. The normal random numbers are generated by the
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subroutine DRNNOQOA of the IMSL package. Conclusive remarks are given in Section 6.

2. Asymptotic properties

Squose B=(BO’319~“)Bp)I) y=(Y17-”’Yn)'y Xt=(1’Xt,ls"-9Xt_p),: X=(Xl|
Xzl .| X', U=(Up,., Ui’ and y= 2 yen U= 2 Uc/n. Then the OLS

estimator 3 of B meets

(B— A= X'X)"IX'U.
Now it 1s assumed that

A,=diag[1,2,(1,n,...,n° D], GO =[1,g,(),...,g,(n)]",

H= [ 606m'a, V= [ Gonma, z= [ far,

and suppose

7= 2 G-p-1D

where U,=y,— By— BiXi1— ... — BiXtp. We now define the Durbin-Watson (DW) statistic

as

pw = 3 (- 0% 2 T2,
the coefficient of determination as

R’= [y’ X(X'X) "X’y —ny)/(y'y—ny?),
and the t-statistic as
tg= (E_Bj)/sgi,
where sz denotes the standard error of ,B,

Now we state two theorems containing the limiting properties of the parameter estimators
and other conventional regression statistics, which are given by Shin and Sarkar (1996).
Theorem 1. Let model (1.1) hold with Assumption 1. Suppose k =1, p =1 and that H is
nonsingular. Then
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(1) A (B=B)/(n*"'d,) converges in distribution to H 1V ,ie.,
d T'a;n'* converges in distribution to (H“IV)HM forj=1, ...p

@ (n—-p—1) &/ (n* 4 %) converges in distribution to (z— V'H™'V),

Theorem 2. Let model (1.1) hold with Assumption 1. Assume that k> 1, p=> 1 and H is

nonsingular. also assume that f, is not a linear combination of g1,82,...,8p. Define z = 0 if

B = 0, otherwise define r= Lm(nxan)/(nkdn) where ¥ = max{0< j < p B+ 0} and

h(r) = 8,g,(r)+£f,(r). Then
(1) DW converges in probability to 0;
(2) if r=00,R? converges in probability to 1;

if o< r(OO,R2 converges in distribution to
1 1
_ 2 _ 21-1 1, _ v —1v-
1-[ [ b= ([ b))~ [z— V'HT'V];
(3) for j=1,....p, tg/ V1 converges in distribution to

(H_lv)i+l,1[ (H~l)j+1,j+1(z— V'H_IV)]—UZ-

3. Spurious regression

A small value of DW together with a moderate R? value may be taken as an indication of
possible misspecification in the sense that the error term Ug ) in model (1.1) is nonstationary.

Granger and Newbold (1974) showed, through simulation results, the danger of acceptance of
spurious relationships if the traditional significant stest statistics are used. [f autocorrelated
errors in time series regression equations are ignored, problem arise involving inefficient
parameter estimates, and invalid significant tests and sub-optimal results when the fitted
equations are used to derive forecasts. Provided that a regression equation relating variables
is found to have strongly autocorrelated residuals, equivalent to a low Durbin-Watson value,
the only conclusion that can be reached is that the equation is misspecified, whatever the
value of R® observed.

We discuss the general framework (1.1) in which kat=ut, V"Xt_p=xt, where V is the
difference operator such that VX, ;=X,;—X,-;,;. For simplicity of analysis and notation it
is assumed that uy, = 0 and x, = 0 for t < 0. Also suppose both {x: and {uJ satisfy the
above condition C1 or C2 for some o‘,z( > 0 and oﬁ > 0. Then application of Theorems 1 and
2 gives the following (Shin and Sarkar, 1996, p. 11).
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Corollary 1. Under the above assumptions of this section, ?, diverges for j < k, while /B\,

converges for j > k; :)2 diverges, all the t-statistics diverges at the rate n'?, DW converges

to 0; R? has a nondegenerate limit which is less than one.

An empirical study and summary. We consider the following special cases of the spurious
regression based on V 'y, =u,, VPXip=%X¢ (A k=1andp=2 (B k=2andp =1,
and (C) k = 2 and p = 2. 10,000 samples of size n for n = 25, 50, 100 and 250 are

generated. For a fixed sample size n, the corresponding empirical means of parameter

estimates, ? and other conventional regression statistics such as t-statistics, R? and DW are
considered. The subroutine DRNNOA is used to generate the normal random numbers. And
the following different algebraic equations are used in data generation.

VY= Uyt = Vi1 TUFY = .Zlui
V= uS Y =2y~ V2 HusSy, =2 Elui_ ‘glui"f“ut
VX1= x> X1 = Xi-11 T x5X 1 = lei
VX=X, P X2 = Xi-12 T X 12X 2= Xlei,l

VX2 =x= X2 =2X 12— Xeopg o + X=Xy 2 =2 Elxi,l - ‘glxi.l + Xy

where x.=u,=0,if t< 0.

Tables 3.1-3.3 show the empirical results in spurious regression against the theoretical
background given by Corollary 1. The following common empirical results from Tables

3.1-3.3 can be seen: all the DW's appear to converge in probability to 0; all *'s diverge; all

the R%s seem to have a nondegenerate limit which is less than one (0.49, 0.37 and 0.78 in
Tables 3.1-3.3, respectively); all the t-statistics seem to diverge slowly; all the parameter
estimates ’'s may diverge very slowly for j £ k and converge very slowly for j > k. From
these results we can observe the fact that OLS statistics such as R? and DW can be used as
diagnostic tools to check the spurious regression in the sense that they can be used as
remarkable symptoms of spurious regression when we obtain DW close to 0 and R? much

less than one. Furthermore, as the orders of k and/or p are getting larger, the rate of

divergence for B;’s and t, 's are getting faster.
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4. Misspecification of nonstationary AR and polynomial regression
models

We consider the effect of misspecification on the asymptotic behavior of the OLS estimate
in which a polynomial regression model

vi= 8+ 81t + 8(t%/21) + ... + 6,(t°/p!) + &, (4.1)
is used to estimate a stochastic trend defined by the nonstationary AR model
Vi= o+ AV T+ o+ B 1 VY1 T BVi—qt (4.2)

or vice versa. It is assumed that & and 7, are the error components and satisfy condition
Cl1 or C2 given in Section 1. For model (4.2) the s roots of the polynomial AL) = [1 - ¢,(1
- L)L - - $,m"] are assumed to lie on the unit circle and the remaining (gq-s) roots to

lie outside the unit circle.

4.1. Misspecification of a nonstationary AR as a polynomial regression model

Assume that the true y, satisfies v%,=72" with 7* satisfying condition Cl1 or C2 of

Section 1 for some & > 0, suppose model (4.1) is fit to the {y.} {=, series. Then applying
Theorem 1 and Theorem 2 with x; = 1, k = s, and U; =y the next result (Shin and
Sarkar, 1996, p. 14) can be obtained.

Corollary 2. Under the above assumptions of Section 4.1, for j < s, /6\, diverges; all

t-statistics diverges at the rate n'?;, DW converges‘ to zero; R? converges to a degenerate

limit which is less than one.

An empirical study and summary. Table 4.1 displays the empirical results under
misspecification of a nonstationary AR(2) as a polynomial regression model of order 2 against
the theoretical backdrop provided by Corollary 2. From Table 4.1 the following can be

observed: ’8}’5, for j = 0, 1, 2, diverge; all three t-statistics diverge; DW seems to converge

to 0; R? appears to converge to 0.96; 62 diverges. All these empirical values in Table 4.1
fully support the theoretical resuits of Coroliary 2. Similarly, OLS statistics such as R? and
DW may be exploited to check for misspecification of nonstationary AR(2) as a polynomial
regression model of order 2 as follows: If DW is close to 0 and R? is close to 0.96, we can

conclude that a nonstationary AR(2) model has been misspecified as a polynomial regression
model of order 2.
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4.2. Misspecification of a polynomial regression as a nonstationary AR model

It is assumed that the true y, is generate by model (1.1) with errors {e&} satisfying
condition Cl1 or C2 with some ¢ > 0, model (4.2) is fit to the {y.} {=; series. Suppose
8+#0 and p> q = 1. Let X,;=0,(t" " /(p—q+i!1,j=12 .., a Then vily,_; =

Xi s+ Op(np_“j*l), uniformly in t. Hence, the asymptotics in the estimated model (4.2} in

the same as those in
Vi=do+ BiXe 1+ ... + 3 Xeq

and we have the following result (Shin and Sarkar, 1996, p. 15).
Corollary 3. Suppose that the above assumptions of Section 4.2 hold.

() If §=208=..=8,_,=0 then §, converges; & converges to o t4, converges; DW
converges to 2(¢®>— ¢)/ &, where tzl €&~y converges to ¢; R? converges to 1.

(2) If some of 8,8y, ...,8,-q are nonzero, then @; converges; o diverges; DW converges to 0;

R? converges to 1; t,, diverges for j such that (H_IV)HU# 0 where H and V are as
defined in (56.2.1) with

GO)=[1,r""""Y(p—q+D!,....r°/p!l, fi(r)=08s"/k!

where k = x = max{j: §; 0, 0<j<p—q}.
An empirical study and summary. Table 4.2 depicts the empirical results under

misspecification of a polynomial regression model of order 2 as a nonstationary AR(2) against
the theoretical background provided by Corollary 3. From Table 4.2 the following can be

seen: 55\2 appears to converge to 1.00; DW seems to converge in probability to 3.4; ? appears
to converge in probability to 4.01; R? seems to converge in probability to 1. Each empirical
value in Table 4.2 entirely defends the theoretical results of Corollary 3. Similarly, OLS
statistics such as R?> and DW may be exploited to check for misspecification of polynomial

regression model of order 2 as a nonstationary AR(2) as follows: If DW is close to 3 and R?
is close to 1.0, we can conclude that a polynomial regression model of order 2 has been
misspecified as a nonstationary AR(2) model.
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5. Underspecification of orders in nonstationary autoregressive
and polynomial regression models

The order values p and q in the polynomial regression and nonstationary autoregressive
models (4.1) and (4.2) and they might be underspecified are usually unknown.

5.1. Underspecification of the order in a nonstationary autoregressive model

If the data are underdifferenced, by which we mean that the AR model does in fact have
some unit roots and/or cointegrating relationships but is nevertheless estimated completely in
levels, so that no unit roots or cointegrating relationships are imposed on the data, then the
unit roots and cointegrating relationships (if present) will nevertheless be satisfied

asymptotically (although some efficiency is lost in finite samples), and moreover, convergence

1/2). The fact that the distribution theory for some of the

is typically at rates faster than O(n
estimated coefficients is nonstandard is of no consequence for construction of point forecasts.
Thus, the costs of under- differncing are likely to be low. Overdifferencing, on the other
hand, discards low-frequency information and destroys cointegrating relationships, and may
cause difficulties for numerical estimation algorithm, due to the induced unit moving-average
roots.

Suppose the true y, satisfies V°y,=7" with 7" satisfying condition Cl1 or C2 for some &

> 0 and is estimated by model (42) with q < s. In this case the model is partially
misspecified. Using Theorem 1 and 2 we get the following (Shin and Sarkar, 1996, p. 17).

Corollary 4. Under the above assumptions of section 5.1, aj converges; i diverges at the

1/2

As=d; RZ converges to 1; DW converges to 0; tg4, diverges at the rate n’'“.

rate n

An empirical study and summary. Table 5.1 gives the simulation results under
underspecification of the order in a nonstationary AR model. In this case Corollary 4 provides

the theoretical background. From Table 5.1 the following can be observed: @, seems to

converge to 0.01 and g/b\l to 1.00; :)2 appears to diverge; R? seems to converge in probability

to 1; DW seems to converge in probability to 0; two t-statistics appear to diverge. All these
empirical values in Tables 5.1 fully support the results of Corollary 4.

5.2. Underspecification of the order in a polynomial regression model
Let the true model for y, be a qth order polynomial regression y,= 8+ éjt+

8(t2/21) + ..+ 8,(t?/q!) + &, 8,0, and is estimated by the pth order polynomial

regression y,= 0p+ ’6\2(t2/2!)+...+/8:,(tp/p!), where p < q. By Theorem 1 and Theorem
2 the following is obtained (Shin and Sarkar, 1996, p. 19):
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Corollary 5. Under the above assumptions of Section 5.2, all the /8}’5 and ?diverges; the

t-statistics diverge at the rate n'?;, DW converges to 0; R? converges to a constant lying

strictly between zero and one.
An empirical study and summary. Table 52 give the simulation results under
under-specification of the order in a polynomial regression model. The following can be seen

from Table 5.2: all the parameter estimates, ? and two t-statistics seem to diverge; R?
seems to converge in probability to 0.94; DW seems to converge in probability to 0. All
these empirical values in Table 5.2 totally support the results of Corollary 5.

6. Conclusion

It is observed from the simulation results that DW and R? and ;)2 can be In general used
as diagnostic tools to detect spurious regression, misspecification of nonstationary AR and
polynomial regression models.
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APPENDIX

Table 3.1. Spurious regression (k = 1, p = 2)

25 50 100 250
statistics
B\o -0.0000 0.0075 0.0292 0.0673
Zg‘l 0.0041 0.0001 -0.0118 -0.1915
Z?\z -0.0004 -0.0002 -0.0001 ~-0.0001
tg, -0.008 0.006 -0.022 0.092
ts 0.002. -0.003 -0.118 -0.249
te, 0.082 0.063 0.017 -0.271
R? 0.479 0.496 0.490 0.489
DW 0.907 0.436 0.253 0.104
? 1.768 3.339 6.572 16.218
Table 3.2. Spurious regression (k = 2, p = 1)
25 50 100 250
statistics

/B\o 0.185 -00281 -1.569 -9.702
Zg‘l -0.063 -0.135 0.058 -0.090
ts, 0.039 0.026 ~-0.044 -0.142
tg, -0.057. -0.024 -0.013 -0.001
R? 0.376 0.377 0.372 0.374
DW 0.447 0.177 0.093 0.015
32 360.4 26309 20221.2 307268.1




Table 3.3. Spurious

regression (k = 2, p = 2)

Some Model Misspecification

n 25 50 100 250
statistics
,73\0 -0.049 0.093 0.111 6.951
73\1 -0.014 -0.002 0.001 0.149
:9\2 -0.011 -0.042 -0.090 -0.230
ta, 0.013 -0.003 -0171 -0.246
tg, -0.018. 0.005 0.067 -0.165
tg, 0.038 -0.152 -0.536 0.740
R? 0.774 0.786 0.781 0.780
DW 1.001 0.318 0.103 0.033
? 90.3 664.3 5020.1 74303.8
Table 4.1. Misspecification of a nonstationary AR(2) as
a polynomial regression model of order 2
n 25 50 100 250
statistics
”3\0 -0.028 -0.109 -0.147 -1.498
’5\1 0.026 0.010 0.025 0.121
’3\2 -0.001 0.001 0.000 -0.001
ts, -0.017 -0.022 -0.053 -0.189
ts -0.123. 0.005 0.147 0.857
ts, -0.015 0.027 0.182 0.308
R? 0.965 0.965 0.965 0.964
DW 0.414 0.113 0.028 0.004
? 3.304 24,774 200.348 3070.343
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Table 4.2. Misspecification of a polynomial regression model of order 2
as a nonstationary AR(2) model

n 25 50 100 250
statistics

33\0 2.988 2.354 1.748 1.285

{51 1.604 1.860 1.961 1.994

55\2 1.030 1.005 1.000 1.000
ts, 3.092 2.354 1.748 1.701

tg, 10.240. 9.658 9.585 9.526

ty, 5.264 5.658 5.783 5.789

RZ 0.998 0.998 0.998 0.999

DW 2.759 3.222 3.411 3.415

P 3.487 3.845 4.009 4.019

Table 5.1. Underspecification of a nonstationary AR(2) as a nonstationary AR(1) model
n 25 50 100 250
statistics

Zb\o 0.019 0.014 0.017 0.013

{[l 1.019 1.012 1.007 1.003

ts, 0.058 0.042 0.042 0.167

tg, 93.065. 257.153 704.187 2722.667

R? 0.982 0.994 0.997 0.998

DW 0.706 0.369 0.187 0.075

. 1.186 2.273 4,618 11.459

Table 5.2. Underspecification of a polynomial regression model of order 2 as
a polynomial regression model of order 2

n 25 50 100 250
statisti

’3\0 -58.497 -220.999 -858.501 -5271.000

’5\1 14.000 26.500 51.500 126.500

ts, ~-5.861 -8.094 -11.315 -17.756

ts, 20.838. 28.441 39.470 61.691

R2 0.949 0.943 0.939 0.938
DW 0.087 0.023 0.006 0.001

? 585.196 9018.000 141570.278 5468059.648




