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An Improved Quantile-Quantile Plot for Normality Test

Jea-Young Leel) Seong-Won Rhee?

Abstract

A new graphical method, named transformed quantile-quantile (TQQ), of a quantile-
guantile (Q-Q) plot is developed for the detection of deviations from the normal
distribution. It will be shown that TQQ is helpful for detecting patterns of how points
depart from normality. TQQ characteristics of the various kinds of representations are
illustrated by a generated sample from a composite of a normal distribution and a
clinical example for TQQ is constructed and explained.

1. Introduction

A test for normality in the data of a given experiment plays a central role in statistical
analysis. A simple graphical method for doing this is a Q-Q, or quantile-quantile plot (Wilk
and Gnanadesikan, 1968), in which the cumulative distribution function is compared graphically
with a theoretical distribution function F. Its competitor, the so-called probability-probability
(P-P) plot, states that the graph is linear even if the two distributions being compared have
different scale or location parameters. Dyer (1974) listed seven tests, of which the Shapiro-

Wilk ( W) and Anderson-Daring ( A2) tests generally provide the most powerful one for a

reasonable class of alternatives. Large-sample versions of W are given by Shapiro and
Francia (1972) and Weisberg and Bingham (1975). Lin and Mudholker (1980) have proposed a
test for normality based on the Z statistic. Looney (1995) studied multivariate normality and
Holmgren (1995) examined the use of P-P plot as a method for comparing treatment effects.
On the other hand, in clinical experiments, many cases are known bimodal like the
distribution of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasians
(Nakamura et al. 1985). Jackson et al. (1989), Nakamura et al. (1985), Miller et al. (1985) and
Lee et al. (1997, 1998) have called attention both to the importance of identifying the possible
multiplicity of population distributions and to the related difficulties. We want to describe a
new graphical method for the identification of deviations from the normal distribution. It is

1) Assistant Professor, Department of Statistics, Yeungnam University, Gyongsan, 712-749 Korea
2) International Research and Consulting Institute, 255-5, Bongsan-Dong, Jung-Ku, Taegu, 700-400, Korea

_67_



68 Jea-Young Lee Seong-Won Rhee

simple and very sensitive to detect outlying point and the multiplicity of distribution.

2. Transformed Quantile-Quantile Plot Method

Let y=F(x)=prl X<x] be the graph of the distribution function for a random variable
X and let ¢ and ¢ be the mean and the standard deviation of the distribution. We can
compare their x quantile values for a set of common y values using the inverse relationship
x=F~!(y), which is known as Q-Q plot. If the two random variables to be compared are
X, and Xy;=(X;—w/o, then

Xy —

y=pA X, <x,]= pr[Xzs “ ] (2 Xp<xs], say),

so that for a common ¥, the x-values satisfy the linear relation x;= ox,+ x£. Therefore, if

the distributions are identical, x;=x; and the Q-Q plot is a straight line through the origin
with a unit slope.

But, the one difficulty of Q-Q plot for normality test is to check the linearity line at the
diagonal side from the origin. To solve this kind of problem, we want to obtain a new
improved Q-Q plot which is named of Transformed Quantile-Quantile (TQQ) plot. The TQQ
is a just technical transformation of Q-Q plot and so its effec;civeness has not been changed,
but the main credit of TQQ is to check the linearity easily or correctly from the y=0
horizontal line directly.

Now, we consider the problem about the test for normality. Let @ be the distribution

function for the standard normal distribution and let x)<x@p<--<x(, be the ordered

. . B . -1 i—c
statistics of xp,%3,...,%,. Given the Q-Q coordinate (@ ( n—9cF1 ) , X(») where
ce€[0,1), we define the TQQ plot based on the following schemes : Based on the null

hypothesis whose random samples are come from normally distribution and calculate the
X(n— X

S where x is the sample mean and s, is the sample
X

standardized value Yy, Y@=

standard deviation, then we have the standardized Q-Q coordinate resulting in

( @_l(n_—LZ_CCTl) , ¥(» ). The next, interchange the values of the x and ¥ coordinates for

inverse functions. i e., interchange the x with the y coordinate value and we get
-1 i—c¢

(yor. @ (n—2c+1))'

Define
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xT=y(1)’

— -1 i—¢ _
yr=090 (—_n—2c+1 ) Y,
We obtain the new TQQ coordinate (xr, ¥7), and plotting xr against yr, we define the

transformed Q-Q plot.
Therefore, the vertical deviation of the TQQ plot presents the difference in the expected

value @‘1(#5_*_1) and ordered y(5. The typical TQQ plot then keeps constant or

parallel with the x-axis and so normality is followed of the deviation proportion from y =10
horizontal line of TQQ. In the next section, we will illustrate how TQQ 1is helpful for
detecting patterns of departure from normality and bimodality.

3. Effectiveness of TQQ plots

We know if the experimental sample is drawn from a normal distribution the Q-Q plot
should be a straight line with a unit slope. The sensitivity of the Q-Q plot has been
discussed by Jackson et al (1989) and Nakamura et al (1985). In particular, they showed that
the presence of sharp breakpoint in the Q-Q plot have been used to detect bimodality. Now
we want to discuss TQQ plots by comparing them with density curves and Q-Q plots.

When density curve and Q-Q plots are constructed for data generated from a single
standard normal distribution (Figure la, b), they are bell shaped and linear respectively. But
the corresponding 3y term variance of the TQQ plot keeps constant and it is very sensitive to
detect outlying points. However, when the sample is taken from a skewed distribution
(Exponential(1)), the Q-Q plot becomes markedly nonlinear and the 3y term variance of the
TQQ plot is strongly inconstant (Figure 2b, ¢). Thus, the inconstancy of the TQQ plot does
not conclusively support the presence of bimodality.

When the random samples are generated from a mixture of two normal distributions based
on the same size ratio (Figure 3 and 4), the corresponding Q-Q plots and TQQ plots are both
S-shaped. But, in Figure 3b, ¢, the Q-Q plot has still a theoretical inflection point. In practice,
this can not be easy to detect clearly; however, the TQQ plot is much more sensitive to
detect normality and bimodality than a Q-Q plot. When the component distributions are of
similar variance and not well-separated, there are almost linear (no sharp break points) Q-Q
plots (Figure 3b). But, TQQ has a fairly clear inflection point around the zero x-coordinate
value(Figure 3c). Of course, when the means are well-separated, then sharp break points are
presented in both plots (Figure 4b, c).
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Figure 1. Generated sample distribution from Normal(0,1) with sample 200
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Figure 2. Generated sample distribution from Exp(1) with sample 200
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(b) Q-Q Plot
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Figure 3. Generated sample distribution from a mixture distribution 1/2%*N(-1.51)+1/2*N(1.5,1) with

sample 200
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Figure 4. Generated sample distribution from a mixture distribution 1/2+#N(-2.0,1)+1/2%*N(2.0,1) with

sample 200
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Figure 5. Generated sample distribution from a mixture distribution 2/3*N(-1.5,1)+1/3*N(1.5,1) with
sample 200
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Figure 6. Generated sample distribution from a mixture distribution 4/5%*N(-1.5,1)+1/5%N(1.5,1) with
sample 200 .
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Table 1 Numbers of 7, and log, 7 cells per mm® in their blood samples

from 20 patients in remission from hodgkin’s disease (Shapiro et al.,1986).

Subject T, log 174 Subject Ty log 1Ty
1 396 | 259770 11 288 | 2.45939
2 568 | 2.75435 12 1004 | 3.00173
3 1212 | 3.08350 13 431 | 263448
4 171 | 223300 14 795 | 2.90037
5 554 | 2.74351 15 1621 | 3.20978
6 1104 | 3.04297 16 1378 | 3.13925
7 257 | 2.40993 17 902 | 295521
8 435 | 263849 18 958 | 298137
9 295 | 2.46982 19 1283 | 3.10823

10 397 | 259879 20 2415 | 3.38292

On the other hand, random samples are generated from a mixture of two normal
distributions based on the various relative contributions of the two components (Figure 5 and
6). In density curves (Figure 5a and 6a), the lesser component became decreasingly noticeable
as its contribution is reduced. In the Q-Q plots (Figure 5b and 6b), there is at least

one break point and the breadth of the inflection range increased with a growing
discrepancy between the two components (Endrenyi and Patel, 1991). But, in general, the
discontinuity is not always so sharp and the objective assessment of its presence is difficult
(Jackson et al., 1989). However, those kinds of problems have been solved by using TQQ
plots (Figure 5¢ and 6¢).

4. Clinical Example (Shapiro et al.,1986)

We shall illustrate the paired samples analysis using data from a study of lymphocyte

abnormalities in patients in remission from Hodgkin's disease. There were 20 patients. Table 1

3

shows the numbers of T, and log 7, cells per mm° in their blood. The raw data are

showing the skewness and unequal scatter. The result shows the success of the log
transformation in producing data that are plausibly normal and have similar standard
deviations (Alterman, D. G. 1991).

Q-Q and TQQ plots are constructed from the sample (Figure 7 and 8). In Figure 7a, the
Q-Q plot is not linear and in Figure 7b, TQQ doesn’t keep constant, also. But TQQ is
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detecting outlier point, i e., the minimum value of TQQ is -0.9422 which is detected as
outlying point (in Figure 7b, mean=0 and SD=0.3355). After log transformation, Q-Q plot is
shaped as linear line but not clear yet. However TQQ plot keeps obviously constant and
therefore, it means normally distributed.

5. Conclusions

A new graphical method, named TQQ, of a Q-Q plot is developed for the detection of
deviations from the normal distribution. In Figure 1, the TQQ plot is more clearly detected
deviation points outside the normal distribution. The characteristics of the various kinds of
representations, which are based on the effect of the separation between distributions (Figure
3 and 4) and the effect of the size ratio of the components (Figure 5 and 6), are illustrated by
a generated sample from a composite of normal distribution. It is shown that TQQ is helpful
for detecting the patterns of points departing from normality and TQQ also points out break
points more clearly. Furthermore, the TQQ plots for bimodal density distributions are
constructed and compared with Q-Q plots. We may therefore conclude that TQQ is a more
improved plotting system to detect deviations from the normal distribution than Q-Q.

(a) Q-Q plot (b) TQQ plot (MEAN=0, SD=0.33556,
MAX=0.38865, MIN=-0.94221)
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Figure 7. Sample in Hodgkin disease T4 case
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Figure 8. Sample in Hodgkin disease Log T4 case
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