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Bayes Computations for the Reliability
in a Bivariate Exponential Modell)

In Suk Lee?), Jang Sik Cho3), Sang Gil Kang4, Jeong Hwan Ko®

Abstract

In this paper, a hierarchical Bayesian analysis of a bivariate exponenetial model is
discussed using Gibbs sampler. Paramters and reliability estimators are obtained. A
numerical study is provided.

1. Introduction

In the problem of life testing and reliability analysis, the exponential distribution plays a
central role as useful statistical model. The problem of estimating reliability in the exponential
case has been considered in some papers. Tong(1974) derived two expressions for the
MV.UE. of P(X<KY). Kelly, Kelly and Schucany(1976) derived the M.LE. and UM.V.UE. for
P(X<Y). However, in all the previous studies, they have assumed the stochastic independence
among the components of system.

But occasionally, independence assumption i1s not applicable in the practical situation.
Naturally, it is more realistic to assume some forms of dependence among the components of
the system. This dependence among the components arise from common environmental shocks
and stress, or from components depending on common sources of power, and so on.
Freund(1961), Marshall and Olkin(1968), Block and Basu et al.(1974) were studied bivariate
exponential models. Also, Klein and Basu(1985), Kim and Park(1990) obtained some estimators
for the reliability. Cho et al.(1996) obtained some approximate confidence intervals for the
reliability.

Let’'s consider a system which functions only as long as at least one of two identical or
very similar components functions, Initially let the two components be independently on test
with life distributions that are exponential with parameters A, denoted exp{A). Failure of one

changes the life distribution of the other to exp(16), >0, where 6=1 implies the
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independence of the two components lives. For 6>1 the workload of the remaining
component is increased, thereby decreasing the mean life. In this case, Weier(1981) obtained
Bayes estimators of parameters and reliability using conjugate prior.

In this paper, we consider Gibbs sampler approach for the hierarchical Bayes analysis in
above bivariate exponential model. We obtain Bayes estimators of parameters and reliability
and provide a numerical example.

2. Preliminaries and Notations

Let X and Y denote the lifetimes of the two components. Then the model is most easily
derived as a function of U=min(X,Y) and W=max(X, Y) —min(X, Y). (See Weier(1981)).
The density of U is then exp(24), and by the univariate memoryless property, W is
independently distributed as exp(A468). Thus the joint density of U and W is

Ru, w)=201%exp(— 2 u—A0w), u, w0, A,6>0.

For a random sample size of size £, the likelihood function is
L(A, 0| u, w)=2%9*A%exp(—22 ﬁ;u,.—wf;w,»).
1= 1=
The MLE'’s are given as

2 U;
?1=—-—k— and 9=—+
2 2 Ui w;

1=

Note that 2U, and W, are independent and distributed respectively as gamma (&, 24)

1=

and gamma (%, A6).

The joint reliability function is given as:
R(uy, wy) = P(U> uy, W wy) = exp(— 2ud — wyAb).
The MLE of R(ug, wy) is given as:
R(uy, wy) = exp(—2upA— wy A0).
Densities are denoted generically by brackets, so joint, conditional, and marginal forms, for
example, appear as [X, Y], [X | Y], and [X]. Multiplication of densities is denoted by * ;
for example, [ X, Y]1=[X | YI*[Y].

3. Hierarchical Bayes Structure.
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The following hierarchical Bayes model is considered in this paper.

(1) [z, wl A, 0] =20A%exp(— 2 u— A6w).
(2) Prior distributions

[A] 8] ~ Gamma(a,, B;), where a; is known positive constant.

[A61A,8,] ~ Gamma (ay, By), where a, is known positive constant.
Then the joint prior is
[A, 6] 81, B1=1[21B1x[28] 4,8,]
1 a—1 a1
=——"T—4" ‘exp(—A/B) - ———;;(/19)  exp(—40/8y),
Na)p; Y Nk ?

where a Gamma (a, 8) variable, say 2z has pdf

I—v(al)ﬁa za_lexD(_z/B)-

(3) Hyper prior distributions
[/31 I Cl,dl:l ~ IG(Cl,dl) and [Bz I Cg,dg] ~ IG(Cg,dz),

where ¢, d1, ¢y, dp are known positive constants and IG(c, d) variable, say ¢ has pdf

g(t>=_,(—c)§ﬁc—ﬂ exp(—1/db.

The joint distribution of [A, 8,8, B2, u, w] is given as
[A, 6,81, B, u, w]
oc [, wl /1,6]*[/{ | B11%[A61 A, 8.1*[B1 | ¢y, di1*[ By | 3, d5]

k+ay—1,2ktata,—2 ,—ay—cy—1 ,—ay—c;—1
< 4 A b B2

: eXD[_ZAgui—Aegwi—ﬂ/ﬁl_/19/52“ l/dlﬁl_l/d252]~

147

From the joint distribution of [A, 8,8, B2, %, w], the full conditional distributions are given

as:

1 [A |z, w,8,p, B

oc AHratert exD[ ’1(2274 02, +7+ B )]

B

-1
that is, [A] -] ~ Gamma(2k+ o ta,— (22” + 02w, +/3+ 0) )

@ 1612 w4 B8] 6* 7L exp(— 6</12wf+ Biz))

that is, [8] -] ~ Gamma<k+a2, (AZw,‘+Biz)~l).

(35)

(3.6
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® 18w w.4,0.80 o 47" exp( -1+ %) GD

-1
that is, [B | +1 ~ IG(a1+c1,(,1+di> )

@ (8| uw,4,6,8] o g e, exp( 7;—(,16+ 1 )) 38)

-1
that is, [ | -1 ~ IG(a2+CZ’(A0+dL2) )

In this section, we use Gibbs sampling originally introduced in Geman and Geman(1984),
and more recently popularized by Gelfand and Smith(1990). Also Gelman and Rubin(1992)
introduced iterative simulation using multiple sequences. In this section, we use Gelman and
Rubin’s method as follows.

First, independently simulate m=>2 sequences, each of length 2#, with starting points
drawn from an over-dispersed distribution. To diminish the effect of the starting distribution,

discard the first # iteration of each sequence, and focus attention on the last #. For an

arbitrary starting set of values Ul(O), UZ(O) o, U, we draw
Ul(l) ~ [Ul I U(O), Ug(,O), . U;O)] UZ(D ~ [UZ | U(l), U(O), e UISO)]’
Ul(,l) ~ [Upl U(D, U(l),-- (1)1] Thus each variable is visited in the natural order and a

cycle in this scheme requires p random variate generations. After 2» such iterations, one

arrives  at (UI(Z”),UZQ”) ,---,U,Sz”)). Under mild conditions(Geman and Geman, 1984),

(Ul("),"-,U;")) 4, (Uy,-+,U,), as n — oo, Gibbs sampling through m replications of the
aforementioned last 7 —iterations generates mn 1id. p—tuples
(Ul, Lo ',U,Ejb) (j=1,2,,m, I=n+1,---,2n); U,-, U, could possibly be vectors in the

above scheme.
To obtain a pdf estimate(of any posterior) we use a Rao-Blackwell argument:

U] =~ (mn)'ljgjﬂ[m Uy" , r#sl.

3.1 Parameter estimation

To estimate the posterior moments, we use Rao-Blackwellized estimates as in Gelfand and
Smith(1991). Using above step (1), the posterior mean and the posterior variance for A are
approximated by

ElA| u, wl=E[E] 6,8, Bz, u, w) | u, w]
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=E[ 2%+, + ap—1) - (zgupL 62w,~+1/,81+ 9/8,) " | ﬂ,_w].

2'(mn)_ljgi 1=$+1[ Qk+ a1+ a—1) - (2 zui-l- 19,(0 gwﬁ- 1/ BU(D+ 0}0/ /32,-(0)“1].

VarAd A | u, wl=El Var(A | u, w, 0,8, B2) | u, wl+ Varl E(A| u, w, 6, B, B2) | u, w]
=E[ 2k+a;+a;—1) - (22u,~+ H‘Zwﬁl/ﬂﬁ- 6/B,) "% | ﬂ,ﬂ]

+ Var{ (2k+ o+ a—1) - (2 guﬁ- sz,--%- 1/8,+6/8) 7" | ﬂ,ﬂ].
z(mn)”ljg 1=€;‘11[ Qk+a;+ay;—-1) - (Zgu,'-i- ﬁ,gogw,'-ﬂ/ Blj(b-l-ﬁ,-(”/ ,32,-(1))_2]
+ (mn)‘lg égl[ (2k+a;+a,—1) - (2 gu,-+ 6;" gwﬁ- 1/ B+ 6"/ ,32i<°)“‘]2
—[(mn)“g l=gl(zk+ o+ a—1) - (2 gu,-+ e}”gwiﬂ/ B "+ 65/ ﬁz,-"’)‘ljz.
By similar method, the posterior mean and the posterior variance for 6 are given as
ELO1 2] = B B+ a2) - (A Bt A18) ™ | 2 ]

=) 3 3 [kt a) - 40 Rt A1 8,1
Varl 01 u, w]

=E[(k+ ay) - (A gwﬁﬂ/b’z)_z | ﬂ_L_U] + Var{(n+ R (Agwﬁ/l/ﬂz)_l | Lt_b_v]

+(mn)_ljg 1=§3+1[(k+ a,) - (/‘l;wlgwﬁ‘/lj(b/ 52,'(0)_1]2

—[(mn)_l,g li;;l(k_i_ @) - (A}Dgw,--f-/i,w/ /3’2;'([))_1]2-

3.2 Reliability estimation

To estimate the posterior distribution of R, it is necessary to find the full conditional
distribution of R.
With Gibbs sequences from the full conditional distributions, We can obtain
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R = exp(— 2w’ — weA[%6("), j=1,2,,m and I=n+1,n+2,-,2n Note that the
R,-(D can be regarded as samples from unknown posterior distribution of K because of
continuity of R.

From the Gibbs sampler procedure, if {R}*!,--,R¥} is a sample from posterior

distribution of R, Bayes estimator of the joint reliability function is approximated by

R = (mn)_ljg l=$-:0-l[ exD(—ZuO"JgD_ wO’I/([)e}l))].

Also the 90% -credibility interval® (equal tails) is :
(Rio.osm » Rio.gsm),
where [0.05m] and [0.95m] are the 0.05mth and 0.95mth order statistics.

4. A Numerical Example.

In implementing the Gibbs sampler, one should be able to draw samples from the full
conditional densities given in (3.5)-(3.8) by using IMSL software.
In our simulated data, we take sample size =30 and #=1.5 and A=1. Table 1 gives

the generated data. For the hyperparameters we take a;= a@y;=>5. To diffuse in hyper prior

stage, we take ¢, =c;=d;=d,=10"°. In Gibbs samper, we use 5 sequences and 3000
iterations for each sequece. We can easily compute the posterior means for parameters A,6
and standard errors for those estimators. The posterior means(standard errors) of A, 6 are
21=0.9671(0.1650) and &= 1.6748(0.4204), respectively. We then obtain the estimated
posterior pdf's of [A | u, wl, [0 u, w] as shown figures 1-2. Each figures are almost
peaked at the true value of A and 6, respectively.

Table 2 contains the true values of R, R, posterior mean, the residuals, and the 90%
credibility intervals for R for several choices of mission time g, wy. Also Figure 3 indicates
graph of estimated pdf of [R | z, w] for R=0.5018, 0.7022 and 0.9032, respectively. The
figure is almost peaked at the true values of K.

Table 1. Generated data

6) A Bayes credibility interval is analogous to a classical s-interval(See Dey and Lee(1992).
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? (u;, wy) ? (u;, wy)

1 (0.2776, 0.0767) 16 (0.4376, 0.2977)
2 (0.8861, 0.6789) 17 (0.0877, 1.2083)
3 (0.3274, 1.3390) 18 (0.9190, 0.1517)
4 (0.1425, 0.5384) 19 (0.2799, 0.0827)
5 (0.7552, 1.0107) 20 (0.4084, 0.6302)
6 (0.7456, 1.0712) 21 (0.5223, 0.5101)
7 (3.2087, 2.0753) 22 (0.1117, 1.0661)
8 (0.4030, 0.5419) 23 (0.5609, 1.51561)
9 (0.6692, 0.3919) 24 (0.6153, 0.2474)
10 (0.6290, 1.2050) 25 (1.2334, 0.2357)
11 (0.0244, 0.9264) 26 (1.3615, 0.1798)
12 (0.6578, 0.2004) 27 (0.1221, 1.9795)
13 (0.0268, 1.8200) 28 (0.1923, 0.0253)
14 (0.1831, 1.3504) 29 (0.4803, 1.4495)
15 (0.3376, 0.0370) 30 (0.5440, 0.0627)

Table 2. Posterior means and 90%

credibility intervals of R

Uy = Wy R K R— R |credibility interval
0.655 0.1010 0.1044 | -0.0034 |( 0.0622 , 0.1567 )
0.456 0.2022 0.2057 | -0.0035 |( 0.1447 , 0.2751 )
0.343 0.3010 0.3034 | -0.0024 |( 0.2336 , 0.3788 )
0.261 04011 0.4027 | -0.0016 |( 0.3307 , 0.4778 )
0.197 0.5018 0.5027 | -0.0009 |( 0.4338 . 0.5726 )
0.145 0.6019 0.6024 | -0.0005 |( 0.5408 , 0.6634 )
0.101 0.7022 0.7022 0.0000 {( 0.6517 , 0.7514 )
0.062 0.8049 0.8048 0.0001 (€ 0.7689 , 0.8391 )
0.003 0.9032 0.9002 0.0030 {( 0.8806 . 0.9186 )
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Figure 1. Estimated pdf of A
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Figure 2. Estimated pdf of 6
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Figure 3. Estimated pdf of R
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