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Smoothing Parameter Selection Using Multifold

Cross—Validation in Smoothing Spline Regression!)

Changkon Hong?), Choongrak Kim3 and Misuk Yoon%

Abstract

The smoothing parameter A in smoothing spline regression is usually selected by
minimizing cross-validation (CV) or generalized cross-validation (GCV). But, simple
CV or GCV is poor candidate for estimating prediction error., We defined MGCV
(Multifold Generalized Cross-validation) as a criterion for selecting smoothing
parameter in smoothing spline regression. This is a version of cross—validation using

leave- k-out method. Some numerical results comparing MGCV and GCV are done.

1. Introduction

Consider a nonparametric regression model
y,-=u(t,~)+e,— j=1,"',7l (11)

where a<t{---{t,<b and the errors e, are zero mean, uncorrelated random variables with
common variance o°. Assume that g is smooth in the sense that it belongs to the m-th

order Sobolev space W of functions on [a,b] defined as

W= {f: function on[a,b] | 7 is absolutely continuous, i=0,, m—1,
f(m)E LZ[a, b]}

Discussions of smoothing splines and their statistical applications may be found in Wegman
and Wright (1983), Silverman (1985), Eubank (1988), and Wahba (1990).

One of many possible estimators of x in (1.1) is the minimizer over g W; [a, b]
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of

L3 st +a [ e ™)ar, 0. 12

The parameter A in (1.2) is called smoocthing parameter, and the choice of A is usually
accomplished by minimizing cross-validation (CV) or generalized cross-validation (GCV).

Typically, the minimizer A of CV or GCV is found by numerical methods and this choice of

A is used for fitting the data.
There are various model selection methods in smoothing spline, such as the Akaike
information criterion (AIC) (Akaike 1974; Shibata 1981), the C, (Mallow 1973), the

jackknife, and the bootstrap (Efron 1983,1986). Especially one of the most useful methods in
selection problem is cross—validation. A lot of work have been done on this, for example
Stone (1974), Bowman (1984), and Hirdle and Marron (1985). The cross-validation idea is
simply splitting the data into two parts, using one part to fit a model and then using the
other part to measure prediction ability. However the version of CV is unsatisfactory in
several respects. Efron (1986) shows that the simple CV is poor candidate for estimating the
prediction error and suggested that some version of bootstrap would be better off. When
selecting the correct model is concerned, it is well known that the model selection by CV
criterion is apt to overfit. The idea of multifold cross-validation (MCV) first appeared in
Geisser (1975) where instead of deleting one observation as in simple CV, k >1 observations
deleted. Some recent developments under linear regression models can be found in, Burman
(1989), Zhang (1993), and Shao (1993).

GCV criterion introduced by Wahba (1977) is most widely used in the selection of
smoothing parameter A. This is due to various optimality properties studied by Craven and
Wahba (1979), Speckman (1982), Cox (1984), and Li (1986). See Eubank (1988) for detailed
discussions.

In this paper, we introduce a version of multifold generalized cross-validation (MGCV)
criterion. In Section 2, CV and GCV are defined, and MCV and MGCV in smoothing spline
are suggested. Some numerical results comparing MGCV to GCV are done in Section 3, and
concluding remarks are in Section 4.

2. Multifold Generalized Cross—Validation
2.1 Cross—validation and generalized cross-validation
The choice of smoothing parameter A in smoothing spline is usually accomplished by

minimizing CV or GCV.
The estimate of A based on the CV criterion is the minimizer of
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S {y— mp ()1,

1=1

CV(A) = —}1

where 1 () (¢) is the spline estimate of g at t;, when the j-th observation has been
deleted from the data. By the delete - one lemma (Craven and Wahba 1979),
p o ()= (71“,) —h iy (1—hj)
the CV criterion can be expressed as

cvin=-L g?l{ yi— 2 ()Y (1= hp? @.1)

where 7, is the j-th diagonal element of the hat matrix H(A). ( see Eubank (1988) for

details.)
The GCV criterion replaces the individual leverage values %(4), , % ,(A) in (2.1) by

their averages 7 g“h #{A), ie, GCV criterion is
1 ~ 2 -
GCVI) =4 3 (3= R ()Y (1—n ’Zlh,-,-)z. 2.2)

2.2 MCV and MGCV

Let K = {7;---,4;} be a size k of index set. Then the delete ~k multifold cross-validation

in smoothing spline can be defined as

MCVIN =3 yx— o (1) ( yx— 1o (), (23)
(%)
k
where g denotes (Z) numbers of all possible summation, yg= (v, ",y and

ra (Ct)=Cru (Ea), ", ra ().
By the delete - k lemma (Kim 1996),
2w ty)= yg—( I— Hg) g,
where Hyg is £X£ submatrix of H(A) and 7x= yx— u( fx) is residual vector, we

can express MCV(A) in (2.3) as

MCV(A) = —1— Sr’ (I-Hg ?rg 2.4)

(%)
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Therefore, the MGCV is obtained by replacing ( I—Hg) "% by its average matrix

A=—1 3 (I—Hg 2, that is

(%)

MGCV(A) = —(};)— > A 7. 25)
k
Remark :@: Natural and intuitive extension of GCV is L g vk Brg , where

n
(%)
B=[ (}2) ; (I—Hg)] 72 . Note that this reduces to GCV when k=1. However, by
k

simulation study, we found that our definition of MGCV shows better results than this.

3. Simulation study

Consider a cubic smoothing spline method, ie, m = 2 in (1.2). The smoothing parameter A
governs the trade - off between the goodness ~ of - fit and the smoothness. As an extreme

case, if A=o0, then the corresponding model becomes simple linear regression.
So far we have seen many criteria to estimate A. For a certain criterion to be good, the

estimate of A based on that criterion should be close to the optimal A in some sense. For

example, if we generate random numbers from a simple linear regression, then good criterion

gives A= oo, In the case of GCV which is most widely used to estimate A, the proportion of

A= o0 based on the random numbers from a simple linear regression is about 58 %. (Wahba

1990, Jeong 1996). In this section we will see the performance of MGCV numerically, and
compare it with that of GCV.
Consider

yi= B+ Bix;t e j=1,,n
For simplicity, we let By=p8 =1, x;= (j—1)/(n—1), and e,-~N(0,o‘2). For n = 20, 50,
and 100, we generate random numbers from N(0,0.1%) and compute A based on MGCV for

k=2, 3, and replicate 1,000 times. Table 1 shows the proportion of A= out of 1,000. We see

that the proportion decreases as n becomes large, and the effect of k is almost negligible.
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When GCV is used, the proportions are .512, .557, .581 for #n=20, 50, 100, respectively.
Hence, we might say that MGCV is more efficient than GOV when n is small

Table 1. Proportion of A= o0 out of 1000 replications based on MGCV.

n
k 20 50 100
2 661 622 582
3 662 621 589

Next, consider
v,= PR+ Bi1x;+ Boxjexp(—2x)+e;, j=1,,n

Again, let By=8,=1, x;= (j—1)/(n—1), and e;~N(0,0.1%).
For B, = 2 and 5 we compute Agcoy and A uccy based on GCV and MGCV,

respectively. Let 2 opr D€ the minimizer of the average squared error (ASE),
ASE=-—- P ( p(x)— p(x))

where u is the true function. We wish to see how close A based on GCV or MGCV, to

A opt

Let
P1 = proportion of | A ,x— Ager | < 0.1
P2 = proportion of | 701,,— Agev | € 0.2
Ql = proportion of | A ,u— A yeer | € 0.1
Q2 = proportion of | A oy— A ucev | < 0.2

Table 2 contains the results for k =2, 3, and 4. We see that A uccy 1S always better than

Accv. Pl and P2 increases as n becomes larger, however, Ql and QZ decreases as n

becomes larger. Also, the effect of k is almost negligible. To see other aspects of GCV and
MGCV. let
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P3 = proportion of | Agu— Agev | > 0.3
P4 = proportion of | Au— Agev | > 1.0
Q3

Q4 = proportion of | 71”,— Aycev | > 1.0.

proportion of | :10,,— Amcev 1 > 0.3

Table 2. Performance of A ¢cy and 2 ccv-
Pl=| Ao~ Agev 1 € 0.1, P2=|2,— Agev | < 0.2,
Ql=|Aop— Ameer | € 0.1, Q2=12,— Acev | < 0.2,

B2 n =20 n=50 n=100
P1 670 754 789
Q1 929 (k=2) 853 (k=2) 827 (k=2)
952 (k=3) 865 (k=3)
966 (k=4)
2
P2 680 766 804

Q2 942 (k=2) 859 (k=2) 841 (k=2)
960 (k=3) 872 (k=3)
974 (k=4)

P1 613 723 746

Q1 876 (k=2) 820 (k=2) 811 (k=2)
8% (k=3) 818 (k=3)
909 (k=4)

P2 648 748 784

Q2 903 (k=2) 851 (k=2) 833 (k=2)
921 (k=3) 845 (k=3)
937 (k=4)
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Table 3 contains the result for k = 2, 3, and 4. Again, A mccv is much better than

2 ccv, especially when n is small.

Table 3. Performance of A cev and A ooy
P3=l 201”_ QGCV | > 0.3, P4=l 2Oﬂf_ 2GCV [ > 1.0,
Q3=12op— Apeev 1 > 0.3, QU=12,4— Aycev | > 1.0,

B, n =20 n=50 n=100

P3 .308 221 181
Q3 049 (k=2) 128 (k=2) 146 (k=2)
031 (k=3) 116 (k=3)

021 (k=4)
2
P4 236 151 109
Q4 014 (k=2) 066 (k=2) 078 (k=2)
006 (k=3) 057 (k=3)
000 (k=4)
P3 322 228 119
Q3 073 (k=2) 126 (k=2) 152 (k=2)
053 (k=3) 131 (k=3)
040 (k=4)
5
P4 236 159 116

Q4 014 (k=2) 065 (k=2) 075 (k=2)
005 (k=3) 060 (k=3)
000 (k=4)

Conclusively, MGCV is much more efficient and stable than GCV when n is small (less
than 50, say).
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4. Concluding remarks

In this thesis, we consider the problem of the choice of A in smoothing spline. The

selection of A is usually accomplished by minimizing cross-validation (CV) or generalized
cross-validation (GCV). However, the simple CV 1is poor candidate for estimating the
prediction error and tend to overfit when the correct model is concerned. So, we suggest
MCV and MGCV which is an extension of CV and GCV in smoothing spline. From the
results of simulation study, MGCV is more efficient and stable than GCV in the sense of
choosing A close to the optimal value.

One disadvantage of MGCV is computation time when n and k are large, however, k-fold
MGCV based on the idea of the k-fold MCV by Burman (1989) would be a good alternative.
Also, the choice of % which seems to be still an open problem can be a good future research

area.
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