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A Random Fuzzy Linear Regression Modelv

Changhyuck Oh2

Abstract

A random fuzzy linear regression model is introduced, which includes both
randomness and fuzziness. Estimators for the parameters are suggested, which are
derived mainly using properties of randomness.

1. Introduction

Consider the simple linear regression model
Y,'=/30+le,'+€,', i=1,2,...,n (1)

where f's are crisp regression parameters, x, are given crisp constants, and &, are

independent and identically distributed normal random variables with mean O and variance o~
Residuals €, are introduced to represent deviations between observed values of Y, and its
expectations. In general it is considered that these deviations are results of omit of many
factors from the model. Linear regression models are widely used in many fields. See Kutner
et al.(1996). But when interval or fuzzy set data for the output are given, the classical
regression model seems not appropriate.

Tanaka et al. (1982) assume that deviations between observed values and their expected
values come from the fuzziness of the system parameters and introduce a fuzzy linear
regression model. For one system variable, it can be written as

Yi=A+Ax;, i=1,2,...,n (2)

where A, and A, are triangular fuzzy sets, x,’s are given crisp numbers. And by properties

of triangular fuzzy sets, Y, is also a triangular fuzzy set. Since Tanaka et al. (1982) has
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introduced the fuzzy linear regression, many works on it have been worked out. See Tanaka
(1987), Tanaka and Watada (1988), Bardossy (1990), and Savic and Pedrycz (1991).
However, as Redden and Woodal(1994) point out, certain fuzzy regression models have an
infinite number of solutions for parameter estimation, wider fuzzy linear regression intervals
when there are more data and that it is hard to interpret fuzzy linear regression intervals.
On the other hand, Nither et al. (1990) consider a linear regression model which contains
both fuzziness and randomness. When the simple linear regression is considered for the center
points, it becomes

Yi=[Y,41,, i=1,2,..,n (3)

where Y,;= B+ Bix;t+ &, is regression model, Y, and 4, are independent and &, random
variables with mean 0 and variance ¢*(¢) and 4, are positive random variables with mean

8, and variance 0*(d4;) > 0. Here &, and 4, are assumed to be independent. &, represents
randomness of the location of the observation and A4, the fuzziness of the observation. And
[a, b]; represents a symmetric LR-type fuzzy set with center ¢ and width &. Nather et al.
(1990) obtain a formula for the “best linear unbiased estimator” of #=c¢ B where
B = (B, B1) and ¢ =(cy, cy) but realize that it is highly complicated to obtain the solution.
Therefore instead of solving the formula, under very restricted conditions that &, and 4, are
independently and identically  distributed Gaussian random variables and that

E(4) = 30(4)), an estimator 7 of 7 are given by

?;=[c'(FF)“‘F Y, ,5;'1' Al A,] 4)

I.
where F=(1, x) is the design matrix with 1°=(1,1,...,1) and x"=(x%;...,%,), and

Y =(3.¥,...,¥n). For estimators of £y, A, and By+ Bix, we have ¢ =(1,0), ¢ =(0,1),

and ¢ = (1, x) respectively. Here, every crisp value 7= ¢ 8 is estimated by a fuzzy set. For
¢ =(1,x), width of a fuzzy set is estimated by a linear combination of the absolute value of
linear functions of x, contradicts to the assumption of identically distributedness for 4,.

On the other hand Diamond(1992) also suggests a linear regression in which both fuzziness
and randomness are contained,

Y,'=BO+BIX,‘+E,’, 2'=].,2,...,7l 5)
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where BO=[BO_ "By ] and Bl'=[Bl_ By ] are unknown symmetric triangular fuzzy sets and
E,-=[Et-_ E,+] is a symmetric triangular random fuzzy set, E; < E! are order statistics
from uniform distribution from (—a,a), @ > 0, and x, are given crisp numbers. Here

[e_'e+] represents a symmetric triangular fuzzy set with left and right end points e~ and
e+, respectively. Maximum likelihood estimators of By, BJ , By, and B1+ are then given
by

B\I_E[ 7> w; (@), I( w,,(a)]

B e[ T wita), TF wi(@)
(6)
_— max _—
BO E[ lslsn(Y,__le,) a, lgzsn(Y— le)+d]
a5 +
B, e[ ISzSn(W Bix)—a, 1<zSn(Y+ le)+a]
where L={(:4,7=1,..,n%5,x;> x}, L={(0:4,7=1,...,n#5,x,{x}},

wy (@)= (y7 —v; —2a)/(x;—x,), and wy(a)=(y{ —y;] —2a)/(x;i—x;). Note that estimator
are not unique since the uniform distribution assumed for random variables E; and E;.

Moreover the value a is assumed to be known.
In the following section, a linear regression which contains both fuzziness and randomness
will be introduced and estimators will be suggested. Examples will be given.

2. A Random Fuzzy Linear Regression Model

In this article we are interested in triangular fuzzy numbers whose membership function is

given by
1—(m—x)u for m—u {x < m
pal)={1—(x—m)/v for m <x € m+v (7
0 other wise
where —oo {(m<{o, u>0 and v>0. We denote a triangular fuzzy number as

A=[u,m,v]ls, where m, u, v are called the center, the left width, and the right width,

respectively. When wu =1, we denote it by A=[m, u]s7.
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Let (R, T,P) be a probability space and K(K) the set of all fuzzy sets 4 on R with
upper semi-continuous normalized ~membership function and compact  support

{xeR:pa(x) > 0}

Definition(Nither et al.(1990)) A mapping Y | £ —»K(R) is a random fuzzy set if every
a-cut of ¥, Y (w)={x=R :u w =@} is a compact random set.

For general discussions on fuzzy random sets, see Kwakernaak (1978), Puri and Ralescu
(1986), and Zhang et al. (1993). Let U, Y, and V be independent random variables on
(2,T,P). Assume U and V are positive. Let be the set of all triangular fuzzy set T
on R with membership function (7). Then clearly 7(R) C K(R). Let g: R* > T(R) be a
function defined by g(w,y,v)=[w,y,v]7. Then g(U, Y, V=[UY,V]l; is clearly a

triangular random fuzzy set. For triangular random fuzzy set [U, Y, V];, the following
theorem is satisfied.

Theorem 1. (Nither et al.(1990)) For triangular random fuzzy set [ U, Y, V];, we have

ELU, Y, Vlr=[E(), E(Y), EV)]1 ®)

Consider a triangular random fuzzy set observations

(U.Y, Vi, i=12,..,n (9)
where
Yi=8,+Bixite, (10)
U= ay+ ai(xi— 2)° + 1, 1)
Vi= v+ nlx—2)°+¢, (12)

x, are crisp constant numbers and By, B, @ = 0, a1 =20, =0, 7 = 0 are unknown
crisp regression parameters. Random variables &, are independent and identically normally
distributed with mean 0 and variance o°. Positive random variables 7z, are also assumed to
be identically distributed and independent. Also ¢, are assumed to be positive and identically

distributed and independent. We also assume all &, , r, and ¢, are independent.

In (9) the center of the random fuzzy set is assumed to follow a classical simple regression,
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the left and right widths are assumed to be positive, symmetric about ;, convex quadratic
regressions. Convexity for U and V, roughly speaking, are assumed to ensure smaller

fuzziness at the center of x;’s.

For the linear regression (10), we apply the maximum likelihood estimators of B, and B,

— e — e (13)
B= ,21( Yi— Y)(xi—x)/ Zl(x,-—x)z and By=Y—Bix
where x= lei/ nand Y= Zl Y;/n. And thus the regression line is estimated by
Y=723+Bix (14)

See Kutner et al. (1996) for estimation in the simple linear regression.
From now on, without loss of generality, we assume that x=(. Estimators ?1/\0 and a; of
@y and @, in (11) are obtained by solving the nonlinear programming problem of choosing

and @y to a; satisfy

o 2
Minimize f_,-‘l( U;—ay— a/lx%)
b=

(15)
subject to U; 2a0+a1x% for all 7 and @y=0 and a;=0
Thus the regression line is estimated by
ay+ axt, i=1,2,...,n (16)

For (12), estimators for 7; and ¥, are obtained by the same way as estimators of a; and

@, i.e., solve the nonlinear programming problem of choosing y; and 7, to satisfy

Minimi V,'“?"‘?’x?z}
inimize 121( 0= 71%7) amn

subject to V; =yy+ 7122 for all 7z and 7,=0 and 7,>0

The estimated regression line is then
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7o+ nx’ 18)

The expectation E(z;) of r, is estimated by a method of moments type estimator, i.e.,

Tu= 2 (Ui— ay— apd)/n (19)

1=1

Note that ¢ since U;— ay— @1x% =0 for i=1,2,...,n. And the variance Var(z) of 1,

is estimated by
2= Z}( Ui— 2y~ oy~ 1)/ n (20)

Similarly, the expectation E({;) and the variance Va»({;) of {, are estimated by

t= (Vi %= 7/ (21)
= B (Vi— - 7= 1)’/ 22)

We then estimate E(U,) by
U= %+ a(x—2)°+ 7y (23)

And we estimate E(V) by
Vi= %+ n(xi—2)°+ v (24)

Since E[U,Y, V]1+=[{E(U),E(Y), E(V)]; by Theorem 1, we suggest an estimator for the
fuzzy set E{U, Y, V]; as

[ U, ?i, T7i]7 (25)
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Instead of minimizing the variance of random fuzzy sets, we first estimate expectations of
three independent random variables Y, U, and V, separately using appropriate regression

lines and methods of moments and then we put them into the fuzzy set to estimate it.
Therefore we remains mainly in the field of statistics to estimate random fuzzy set.
We consider an artificial data to demonstrate our estimators.

Example 1. Suppose data are given (x;, Y))=(1,[4,2]sp), (%, ¥2)=(2,[4,2]1sp,

(%3, Y3)=(3,[5,11sp), (x4, Y4)=(4,[7,215p), (x5, ¥5)=1(5,[8,2]sp). First we assume
model (9) and obtain estimates. The center line E(Y)= 8+ B1x is estimated with data (1,4),
(24), (35), (47, (58) by

y=2.3+1.1x

from (14). We solve nonlinear programming problem (15) with data (1,2), (2,2), (3,1), (4,2),
(52) to get the estimate @, and of @, and ;. We obtain that a,=1, @;=0.25, and

ot 2;(x—3)?=1+0.25(x—3)2. The expectation E(r) of 1 are then estimated
ty=0.5/5=0.1 and thus the estimate for E(U) is given by

%=0.140.25(x—3)*=1.1+0.25(x—3)%.

Therefore the expectation E(Y+ U)=E(Y)+E(U) of upper end points Y+ U of the
random fuzzy set is estimated by

Y+ 2=3.4+1.1x+0.25(x—3)%

Since Y=V, the expectation E(Y— V)=E(Y)—E(V) of lower end points Y—V is
estimated by

y—2=1.24+1.1x—0.25(x— 3)?

On the other hand if we assume model (3) of Nither et al. (1990), then from (4), estimate of
real value E(Y)=f8,+ Bix are given by a fuzzy set

[ 3’\, /3(36)] ST

where

M) =0.2x%|x—1+0.4%|x—2/+0.2+0.4x|x— 4] +0.2%|x—5|.
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Even though Nither et al. (1990) assume that variance of 4 does not dependent on x,

estimated upper and lower end points does depend on x.
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Figure 1 Estimated Regression Lines

] — — — Suggested model R4
Nather's model N
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