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A Recursive Method of Transforming a Response Variable
for Linearity

Han Son Seol)

Abstract

We consider a graphical method for visualizing the strictly monotonic transformation
of X3 so that the regression function E(#(y) | x) is linear in the predictor vector

x. Cook and Weisberg (1994) proposed an inverse response plot which relies on the
results of Li & Duan (1989) to obtain consistent estimates. Based on the recursive
addition of the results from the two dimensional plots, we propose a new procedure
which can be used when the consistency result is in doubt.

1. Introduction

The linear regression model is considered as a standard method to analyze statistical data.
The assumptions behind the linear model include homogeneity of variance, additivity and
normality. Transformation of the response which would result in satisfying the above
assumptions was firstly considered by Box and Cox (1964). They formulate this problem by
restricting  transformation of the response within the parametric family of power
transformations indexed by an unknown power. For the estimation of unknown power they
suggest a maximum likelihood type estimation by maximizing an objective function. This
method gives transformation toward normality because unknown power is estimated to make
errors as nearly like a normal sample as possible. Cook and Weisberg (1989) used a dynamic
graphical method for the determination of unknown power. Atkinson (1973, 1982) suggested a
score statistic for transformation and proposed partial residual plot for the estimation of
transformation parameter.

Here we concentrate on the linearity issue. Suppose that there is a strictly monotonic

transformation of the response # y) with response ¥ and the predictor vector x :

Hy) | x=By+BTx+e (1.1)

where E(e) =0, Var{le)=¢" and ¢ is independent of x. In this formulation any linear

function of #y) which satisfies (1.1) will also satisfy (1.1) with corresponding value of Bo

and B. Hence Ky) is not unique and any strictly monotonic transformation that satisfies
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(1.1) will be denoted by #y). Since #)is defined only up to linear transformations, we
assume without loss of generality that B;=0. Cook and Weisberg (1994) suggested a

graphical method for visualizing the form of the transformation of #3y), which will be

reviewed shortly later. Under the certain conditions, Cook and Weisberg’s inverse response
plot seems to perform well. However inverse response plot relies on the results of Li &
Duan(1989) to obtain a consistent estimate of A8 in (1.1). In this paper we propose a new
procedure, based on the recursive addition of the results from two dimensional plots, which
can be used when the consistency result is in doubt. Section 2 reviews the inverse response
plot suggested by Cook and Weisberg (1994). A new procedure and a couple of examples are
given in section 3. Section 4 contains some remarks.

2. Inverse response plot

We denote two dimensional plot as {h v} with the understanding that h is assigned to the
horizontal axis and v is assigned to the vertical axis. Assume (1.1) and consider the problem

of finding a response transformation #¥). If k8 were known the plot {3y, A87x } will

provide a visualization of an appropriate transformation. According to the different value of £k,
the transformations displayed may not be same, but they are related linearly and are all
satisfy (1.1). Cook and Weishberg (1994) suggested an inverse response plot taking the

following approach. Since exact value of k8 is not so sure in most cases maximum

likelihood-type regression based on a linear model y=ay+ e’x+e is considered as a
practically useful estimators of A8. The maximum likelihood estimate of (@ @) is obtained
by minimizing an objective function n_IZL(afo%-arTx,; y;), where L(m,y) is convex in m
for each y. Ordinary least squares is an example of possible estimation method. Following Li
& Duan (1989), @ is a consistent estimator of %8 if E(x|B7x) is linear in A”x. This
condition hold for all A if and only if x has an elliptically contoured distribution (Eaton,

1986). Since we can get a consistent estimate of A6 using Li & Duan’s results, we now

assume that £ is known in the argument of population case.
We consider the plot {3, A& Ty} for obtaining a good impression of an appropriate
transformation. The plot {3y, A7x} is useful when, at least approximately, E(87x|y)=#3).

Since #y) is assumed to be monotonic, the following holds :
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BE(B'x1y) =E(Bx| £))
=E(B'xt+e—e| y))
= FE(Hy)— €| t(g))
=Hy)—E(e| B'x+e)

Thus to satisfy the condition E(8%Tx | y) = #), it requires that E(e | 87x+ &) should be linear
in #y). It follows from Cambanis, Huang and Simons (1981) that this condition will hold if
(87x, € follows an elliptically contoured distribution. As another example that the condition

holds, if € and B7x+ ¢ have same marginal distribution f then

i [eroRi-e)de
E te=1) =
(e| Bilx+e=1 ff(k)f(l—k)dk
=[—Ee| fx+e=1)

and thus E(e| B7x+¢) is linear in BTx+¢e = Ky).
To measure the degree of linearity, the population correlation coefficient between E(87x | )

and #y) can be used.

. Cov[ E(BTx | ) K )] @D
Varl E(BTx | )" Var( () '
Let
E(B'x| )=E(B™x)+ 8(t—E(D)) + 7 (2.2)
where
T T
o= COMLBELI) VB D and 7= E(B"x| )~ B8R~ &t= E(1).

Since &6 is defined to be the population OLS regression of EBTx| Ky)) on 1,
Cov{6(t— E(DH), 71=0 and (2.1) becomes

_ Var(y) Var(e) \| ™
o= {1t Vi g 1 Varts T ) 23

The applicability of the inverse plot depends only on the noise-to-signal ratio
Var(e)/ Var(BTx) and on a nonlinearity ratioc Var(7)/ Var{B87x). Once ) is estimated from
the inverse plot applicability of the method can be checked by calculating a sample correlation

between Hy) and an estimate of E(B7x|y) which can be obtained by smoothing the plot
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{ {y), /§T x). A graphical check is also available. Fit the regression of X3) on the predictors,

and draw the plot { ET x, {)). The linear and homoscedastic trend implies that the deviations

y from (22) are all negligible and an appropriate transformation has been found. For
examples, see Cook & Weisberg (1994).

3. A recursive procedure

We suggest a new procedure which can be applied when the consistency result is in doubt.
Cook & Weisherg’s inverse response plot becomes free of consistency restriction in simple
linear regression case. Suppose that there is a strictly monotonic transformation of the
response X y) with response y and a predictor x :

Ky | =B+ Bixte (3.1)
where E(e) =0, Vare)=¢" and € is independent of x. We have x={#y)— By—€}/B; by
just solving the equation (3.1) with respect to x. Thus we consider the plot {3, x} rather

than {y, Bjx} to obtain a graphical display for a function #). Similar arguments in section

2 are applied here. The plot {y, x} is useful when, at least approximately, E(x| )= #3)
which is equivalent to E(By+ Bix| ¥)=#y). As a measurement of linearity, the population

correlation coefficient E(8y+ B1x | #(y)) and K) can be written as

_ Var(2) Vare) -1z
”—{H Var(Bo+/31x)( + Var(Bo+ B )} (3.2)

with similarly defined 7y in (2.2).
Now we go back to the multiple linear regression case. For the simplicity of the problem,
we consider linear regression with two predictors. Suppose that there are strictly monotonic

transformation of the response such that FE(#y)|zx; x;) is linear in x; x, and that
E(h(y) | x1), E(g(¥) | x9) are approximately linear in x; and x:

K9 | x1,%0 =B+ Bix+ Boxz+ e
() | X1 apt ax;+ e (3.3)
g lxy =yt rxte

then #y)is approximately same as a#h(y)+ bg(y) for suitable values of a and 4. A(y)and
g(y) can be estimated from the plots {y, x;} and {3, x5} respectively. Though a condition

(3.3) seems well guaranteed in most cases, when assumption (3.3) is in doubt we may take a

transformation on independent covariates. For the determination of #y) with estimates of
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h(y) and g(y), we can use animation. Animation is accomplished by varing A over -1 to 1
and redrawing the plot:

{v, A(»)+(1— [A1)e(»)} (3.4)

A transformation A y) can be estimated by fitting a curve the plot. As A varies corresponding
plot of (3.4) and residual plot from the regression of #¥)on x; and x, are redrawn and R?
is also calculated. We stop at the plot with the biggest R? among the moderate residual
plots and choose the corresponding #y) as an appropriate transformation. The applicability of
this procedure depends on the applicability of the method for finding #(y) and g(y). This
depends on the linearity between  E(ay+ax,|y) and #y) and the linearity between
E(yy+ 7%, | ¥) and #y), which are enhanced by letting Var(x;) and Var(x,) as large as

possible from (3.2). Sample version of this condition can be roughly accomplished by
orthogonalizing x; and x; (Cook & Weisberg, 1990). For the estimation of #%(y)and g(y),

although we may use any set of two predictors which span the same subspace as spanned by

the columns of x; and x; we use orthonormal predictors to get good impression of A(y) and

g(y). When the dimension of predictors are more than two we use the proposed method

recursively. We summarize the procedure as follows:

1. Orthonormalize predictors and let them x:, i=1,.,p.
2. Make a plot of {3, x]}.
Fit a curve the plot and let the fitted values be h(y) .
3. Do the step 2 with x3 and let the fitted values be 2(¥) .

4. As A moves from 0 to 1 :
Draw a plot of {3, AR(M+(1— [A1)g»).

Fit a curve the plot and let’s denote the fitted values as ?,1(3’).
Do the regression of (3) on x| and x;.
Draw a residual plot and Calculate R°.

5. Stop at the plot with the biggest R? among the suitable residual plots

and let the corresponding #(y) be t'(y) .

6. Treat () as new k() .

Go back to the step 3 with next predictor x3 and find new 2(y) .
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7. Repeat steps 4 and 5 and 6 until the last predictor is applied.

The final t'(y) is considered as an appropriate response transformation.

If the number of predictors is small, for example $=3, then we may let
Faa, ()= fitted curve of {y, A+ 1~ [ 1EN}+ 1~ | 21)s(3)} (35)

where s(y) | x3 =8+ 8x;+¢&3. We consider 4; and A, together at step 4 and proceed the

next steps. Examples are now given to illustrate the usefulness of the new procedure.
Programs for examples are coded by Xlisp-stat (Tierney, 1990).

example 1. (Artificial data)

We generate a small sample size of 10 observations with predictors which does not follow

elliptically contoured distribution so that consistency result is in doubt. 10 observations were
generated according to the following models:

logy=18x,+6x,+ ¢

y3=x1 * & (3.6)
logy—i—?y3=6x2+e

where & is normal random variable with mean 0 and variance 0.05% and &, = exp(3¢). 1,
is linearly defined by a beta random variable as x;=0.2+0.8Xw, where w follows beta
distribution with parameters 05 and 3. y and x, were generated according to the models,
y=0(x, - &))"® and x,=1(1/6) x{1/3logx; — 18x,} respectively. An artificial data is given in
Table 1. Since logx; is approximately linear in x;=(0.2, 1), the following holds:

Ky)=logy = 18%,+6x,+¢, e~N(0,0.3%
Wy)=logy = (1/3)x;+ 3¢

2(3)=logy—18y> =~ 6x,+ ¢

Note that #3v), h(y)and g(y)are all strictly monotonic functions. Figure 1 shows the
inverse response plot of {y, §} A superimposed line 1 is a fitted curve to the points which

is obtained from the ordinary least regression of ;) on ¥ and yz. Line 2 on the figure 1 is

ordinary regression of y on log y, representing transformation #y). Two lines on the
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figure 1 show that response transformation indicated by the plot {y, y} is far different from
the correct transformation Hy). We now apply the new procedure. #4(y) and g(3) are
estimated parametrically by the model, E(x;) = By+ B+ Boy*+B3°, i=1,2. H(») is
derived from the linear regression AR(»)+ (1~ | A|)g(3») on 3% ...,3% Four frames of
an animated plot in figure 2 correspond to { v, /t}( y)} with indicated value of A. Figure 3 is
{5, 1 y)} and corresponding residual plot of A=0.9 with the biggest R®=0.831. A

superimposed line on the figure 3 is obtained from the ordinary least squares regression of

Ee(y) on logy. The curve gives an excellent visual fit to the points in the figure.

Table 1. Data generated according to (3.6)

N 1 2 3 4 5

S 6 7 8 g 10
0.616831  0.572603 0.557519 0.66435 0.635319

Y | 0.706679 0.647205 0.59753  0.691073 0.636159
0.264858  0.206599 0.215221  0.289896 O.229528

X

1| 0.408801 0.282782 0.212863 0.328726 0.286997
Z0.868383 -0.707407 -0.731001 -0,938479 -0. 770347

X2

-1.2761 -0.918517 -0.724539 -1.047985 -0.93034
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Figure 1. Plot of {y, ¥} for Table 1.
Line 1 is fitted line to the point.

Line 2 is OLS line of ¥ on log y.



304 Han Son Seo

0.2 0.4

Estimated values

0

Estinated values
-0.2

-0.4

0.55 0.6 0.65 0.7 0.75

v
Lambda 0.2
[ I — 1
o
1
g oo o
— o
o o,
5 ©
.UD o
9o
g ! o
=
el
-
) = ©
(23] .
T

0.55 0.6 0.65 0.7 0.75
v

Figure 2. Plot of {y, (3}
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Figure 3. Plot {v, %4(»)} and residual plot from regression of th9(3 on xjand x,

Line on the plot {y, %s(»} is from OLS regression of #4(3) on log y.
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example 2. (Wool data)

We consider wool data which was discussed by Box & Cox(1964) and Atkinson (1985, p.8l).
Cook and Weisberg (1994) also used this data to show the usefulness of the inverse plot.

Since wool data has three predictors we consider #; () in (35). Figure 4 shows
{», #( ¥)} and residual plot of A;=—0.6 and Ad,=—1 which has the biggest R>=0.808. A

superimposed line on the figure 4 is obtained from the ordinary least squares regression of

t_06.01(» on logy. The curve indicates that the log transformation is a strong candidate

for achieving linearity in (1.1) agreeing with the conclusions of Box & Cox, of Atkinson and
of Cook & Weisberg.
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Figure 4. Plot {v, #_g4,0. (3} and residual plot from regression of #_gg4,(3) on x and

x; for wool data. Line on the plot {y, #_g6,0.(»} is from OLS regression of #_ggq,(3)

on log y.

4. Concluding remarks

The inverse response plot suggested by Cook and Weisberg relies on the results of Li &
Duan(1989) to obtain a consistent estimate of kBin (1.1). The methodology proposed in this

paper is designed to be useful when the consistency result is in doubt. Example 1 shows that
this method suggests proper response transformation while Coock & Weinberg’'s method fails.
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Furthermore, as we can see in the example 2, it also works with a usual data set as well as
other methods do. New method can also be used to find a transformation which compromises

the linearity and the normality assumption by displaying {y, E(y)} and Q-Q plot, which

change as A varies, simultaneously.
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