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Optimal Minimum Bias Designs for Model Discrimination
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Abstract

Designs for discriminating between two linear regression models are studied under
/L -type optimalities maximizing the measure for the lack of fit for the designs with
fixed model inadequacy. The problem of selecting an appropriate A-type optimalities

is shown to be closely related to the estimation method. A-type optimalities for the
least squares and minimum bias estimation methods are considered. The minimum
bias designs are suggested for the designs invariant with respect to the two
estimation methods. First order minimum bias designs optimal under /A-type
optimalities are then derived. Finally for the case where the lack of fit test is
significant, an approach to the construction of a second order design accommodating
the optimal first order minimum bias design is illustrated.

1. Introduction

Many results on the optimal experimental désigns are derived under the assumption that the
statistical model is known at the design stage. Most often in practice, however, the
experimenter will not know the correct functional form but instead will have two or more
plausible models in mind. The experimenter’'s goal is then to implement a design that is
efficient to discriminate between these rival models and select the best one.

Suppose that there are two rival models 7,(x, 8;) and #7,(x, 6;) expressing the expected

response at a point x in some specified design space x, where x is a vector of design

variables and ;s are vectors of unknown parameters. Suppose also that 7,(x, €,) is the

true model. A design & is a probability measure on x. Let & denote the class of all

probability measures on x. Atkinson and Fedorov (1975a) used the non-centrality parameter

inf g A(E, 84, 8,) = z'nfalfz{riz(x, 0,)—n(x, 01)}2(2’{-‘
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as a measure of the capability of a design & for detecting the lack of fit of model

71(x, ;). They suggested T-optimality that maximizes inf 0 A(E, 0, 8,) in some sense.

The T-optimality was extended by Atkinson and Fedorov (19758) to the case of more than

two rival models. Fedorov and Khabarov (1986) illuminated the connection between the T
-optimality and some design criteria for parameter estimation. This paper assumes that both

n(x, 8;) and 7,(x, 8,) are linear regression models and 7,(x, #,) is a special case of

79(x, @,). That is,
mix, 8,) = 7 (x)0; and 7(x, 8;) = ' (%) B+ /' (x) B3,

where f{(x) is a p;X1 vector of known functions of x and &y, = (8,", 8, ). In these

circumstances we may assume that 7,(x, 8,) is the true model. Then
A(E, 01, 02) = (31" 01)'M11(5)(31_ 01)+2(31_ 01)'M12($)Bz+ BZ’MZZ(E)Bz

and inf , 4(&, 0., 6;) is obtained as By L(£)B; when 6,= B+ M7 EIM(E) B, where

My(&)= [ £(o)F (x)de and

L(&§) = Mpn (&) — My’ (£)M1 (€)M 1(8).

Atkinson (1972) has investigated the design criterion maximizing det(L(£)), the determinant
of L(&). The T-optimality reduces to the maximization of By L(&)B,. Since B3 L(€)B,

depends on the unknown parameters B, Atkinson and Fedorov (1975a) suggested a maximin
approach to this problem in which the design is chosen to maximize the minimum of

By L(&)B, over a specified region @ of B,. In order to specify a reasonable @, Jones and

Mitchell (1978) introduced inf,7(#,, 8;) as a measure of the inadequacy of model
m(x, 8,), where (8, 0,), the integrated squared distance between #,(x, #,) and

7o(x, 5), is defined as

€61, 0;) = [ {nlx. 0= ni(x 0 dx| [ dx
=(31_ 01)’ﬂ11(31" 01)‘*‘2(31_ 01)'ﬂ1232+ BZ’/IZZBZ
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and U= fxf,-( x)fi (x)dx / f za’x. Since (6, 85) achieves its  minimum

By TBy= By (p— ' 1t 1) B2 at  01= B1+ 1 'up By, they proposed / -optimalities
that maximize the minimum and average of B, L(&)B; over O={B8;: B, TBy= 4} for
some constant 6>(0. The A -optimalities were shown to be equivalent to the maximization of
Chpin (T IL(E)) and #(T "'L(&)), the minimum characteristic root and trace of 7T ~'L(§),
which are respectively called /,- and Aj-optimalities. Recently DeFeo and Myers (1992)

considered A”-optimalities that maximize the minimum and average of By L(£)8, over

O={B,: By T (&)By=23}, where By T(&)By=t(B1+ M1 ()M (€)AB,, 6,) and
T'(E) = pp+ My ()M (&) My (E)Mp(E) =210 Myt (€)M (€).

Similarly ~ A*-optimalities reduce to the maximization of ¢k (T" (£)L(E)) and
tH{(T" (£)L(E)). They are respectively referred to as A}- and /Aj-optimalities. /- and

A’-optimalities are members of T -optimality and useful for selecting the most
discriminative designs from the designs that offer the same protection against the model
inadequacy.

Section 2 first reviews the statistical meaning of the minimization of A4(¢&, é,, 8,) and
( 8,, 8,) with respect to @; and shows that inf g 4C&, 81, 8;) and inf , (8, 8,) are

not always B, L(£)B, and B, TB,, but they depend on the estimation method. We define
A -type optimalities for given estimation method as the maximization of the minimum and
average of inf , 4(&, 81, 0;) over (D={ Oy inf 5708y, 8,)= 6}. /Ll -type optimalities for the
least squares and minimum bias estimation methods are then considered. The minimum bias
designs are suggested for the designs that are invariant with respect to the estimation
method. First order minimum bias designs optimal under A -type design criteria are obtained
in Section 3. Section 4 illustrates how to construct a second order design accommodating the
optimal first order minimum bias design. Efficiency of the optimal minimum bias designs is

discussed in Section 5.
2. A-type design criteria

Usually the optimal design problem for linear regression models is solved under the
assumption that the model is fitted by the least squares method. However, we do not confine



342 Joong-Yang Park

ourselves to the least squares method in this paper. Suppose that /20\1 1s a linear unbiased
estimator of #; and 7,(x, 8,) is fitted by f;"(x) /0\1. Let E ,2(/0\]) denote the expected
value of /0\1 under model 7,(x, @5). The corresponding non-centrality parameter and

integrated squared bias of fi'(x) /0\1 are then obtained as A4(& E ,( /0\1), f,) and

(E ,2(/0\1), 8,). Once the estimator is chosen, the non-centrality parameter and integrated
squared bias are also determined and / -type optimalities for the estimator can be derived. It
is not reasonable to deal with 4(¢, @, 8;) and (@, §,) separately and minimize them
individually. The minimization of A4(&, 8, 8,) or t(8,, 8;) with respect to @, is
equivalent to finding an estimator that minimizes the non-centrality parameter or the
integrated squared bias. Therefore B3 L(£)B; is the non-centrality parameter for the
estimator ?1 such that E,( /0\1)= B+ MiYEYM(E)B, (Condition 1), while B, T8, is

the integrated squared bias for the estimator 6; such that E,( /0\1)= Bi+ g upB,

(Condition 2). We thus focus on / -type optimalities for the estimators satisfying Condition
1 and/or Condition 2. ’

The linear unbiased estimator satisfying Condition 1 is the least squares estjmator. If
71(x, @) is fitted by the least squares method, the values of 4(¢&, 6, @) and (8., 8)
are obtained as B, L(&)B; and B, T'(E)B; by replacing @, in A4(E, 64, 8,) and
(8., 0,) with B1+My'(&)Mp(E)B,. Since By L(E)B, and B, T*(£)B, do not contain
@, it is not necessary to minimize them with respect to ;. /l-type optimalities become
the A}- and Aj-optimalities proposed by DeFeo and Myers (1992). If the least squares
estimator is used, #(@,, 8;) does not attain its minimum B, T8, in general. It is not
practical to minimize or average B3 L(&)B, over a region expressed with the unattainable
term B, TB,; Therefore A,- and A,-optimalities may produce somewhat impractical
designs. For example, according to Example 2 of Jones and Mitchell (1978), A;-optimal
designs that are available only for %<4 require too many support points and A,-optimal

designs for k=4 are powerless.
We next consider the linear unbiased estimator satisfying Condition 2. Karson, Manson and
Hader (1969) advocated the linear estimator minimizing the integrated squared bias of the

estimated response. The estimator satisfies Condition 2 and is unbiased under model

7(x, @,). Among the estimators satisfying Condition 2 the estimator having the minimum
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integrated variance is called the minimum bias estimator. If #7(x, 8;) is fitted by the
minimum bias estimation, the corresponding values of 4(&, 8;, 8;) and z(@,, 8,) are given

by By L*(£)B, and B, T8, where

L*(&)= Mp(&)+ pyy py "My (Epny peyy— 2010 141 "M (8).

A -type optimalities for the minimum bias estimation then reduce to the maximization of

ch min(T_lL*(e)) and #( T 'L*(€)), which will be respectively referred to as ;- and
ﬁ}—optimalities.

DeFeo and Myers (1992) developed the designs that are efficient under A*-optimalities.
Many authors ([5], [81,[9],[13],[141,[15]) have studied the designs for the minimum bias
estimation. Unfortunately it is difficult to characterize A;- and /T,-—optimum designs. This is
because the classical optimal design theory based on the convex optimization can not be
applied to A*- and 7l -optimalities, since T*_I(E YL(£) is not convex with respect to & and
the set of designs permitting the minimum bias estimation is not convex. In order to derive
the designs optimal under /-type design criteria, we reduce the design problem to a
manageable problem by the following invariance requirement. Data are usually collected by
performing the experiment designed to optimize the chosen design criterion. However, the data
analyst may use an estimation method different from the one used in the design stage. It is
therefore desirable to use an experimental design that is efficient and invariant with respect to
the estimation method. One approach is to design the experiment sc that both Conditions 1

and 2 are simultaneously satisfied irrespective to which of the least squares and minimum
bias estimation methods is used. This can be accomplished by confining our attention to

Ey={&Myp(&)=M; (&) "1}, the class of minimum bias designs for estimating the
expected response advocated by Box and Draper (1963) and considered by several authors
([71,[8]). Then A*- and /1 -optimalities become identical and any of the two types can be
used for selecting designs from &;. The minimum bias designs for other design objectives

have been studied by Myers and Lahoda (1975) and Park (1990). It is interesting that the
minimum bias designs for the estimation of the expected response are also useful for the
model discrimination.

3. Optimal minimum bias designs for model discrimination

In this section we suppose that #7,(x, §;) is fitted by the least squares or minimum bias
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esitmation method. Then the non-centrality parameter and integrated squared bias for the
minimum bias designs can be written as By L(&)B, and By THB,; Both A*- and A
-optimalities reduce to the maximization of ¢k pn(7 'L(&)) and (T ~'L(&)). They will
be simply called A -optimalities. The A’ -optimalities may appear similar to the A
-optimalities. But the A -optimalities are different from the /A -optimalities at the point that

-

& is restricted within &), instead of Z. The A, -optimal designs are obtained as follows: It
is well-known that ¢k min(7 “'L(&)) and tA T "'L(&)) are concave and increasing functions
of T 'L(&) when £ ranges over &, ie, if T 'L(&)>T 'L(&) in the sense of positive
definiteness, then & mn(T 'L(EN=ch min (T 'L(&)) and AT 'L(E)) =t T IL(&)).
The concavity and monotonicity hold when & ranges over &), since &, is a convex subset
of Z. Let G be a group of orthogonal transformations g on x and let &% be the rotation
of £ under g. Assume that for each g G and i=1,2, there exist orthogonal matrices
Q. such that f(g(x))=@Q,fi(x) for all x=x. Then it can be shown that
TTUL(E)=T7'QL(8)Q,, Q,TQ,, =T and the minimum characteristic root and trace
of T 'L(£%) are equal to those of 7 “!L(&). If the design space x is invariant with
respect to G, the concavity ensures that it suffices to consider the minimum bias designs
that are invariant with respect to G, ie., the minimum bias designs such that
Q2 L(8)Qy, =L(&) for all g=G. The invariance condition implies that
Qi M;(E)Q;; =MA&) for all ¢, j and g€ G. Such designs are called the invariant
minimum bias designs. The A, -optimal designs can be found within the invariant minimum
bias designs.

Suppose that 7;(x, 8;) and #7,(x, 8,) are respectively first and second order polynomials
of k&  dimensional vector . x (k>2) and x={x:x,/<1,i=1,--,k. Then
A(x)=(1, %, %, ,%x) and fo' (%)= (2, %3, x5, %1%, X1%3, =", X 4—1%s). Let Gy denote
the invariant group of all permutations and sign changes of the coordinates of x. @,'s are
then orthogonal matrices of which columns are unit vectors multiplied by 1 or —1. The

design space x is invariant with respect to Gp. It is therefore sufficient to consider only the

first order invariant minimum bias designs. The invariance condition mentioned in the previous
paragraph is equivalent to the following design moment conditions:

(i) fx,dé=0 for all 7
x
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(i) [ #%dE are equal for all 7
X

(iii) f x%x?dé are equal for all i#j;
x

(iv) fx‘,i-dé are equal for all 7;
x

(v ) Other design moments up to degree 4 are zero.

The design moment matrices M ;(€) of first order invariant designs and p, are then

obtained as

Mu(s):((l) m(z)’lk)' M12(5)=(m21k’ 0,).

0 0
Mzz(é)z((m4—mzz)lk+m22]k 0’ ), = 1 10’
0 My L yr-112 0 3[
1, 4 4
Hp= [ 3 L 0 and pp=|45 Ik+ Tk
0 0 0 —Ik(k n/2

where my= fx?dE, Moo= fxfx,QdE my= fx?dé, I, is the identity matrix of order &,
z b 4 x

1, is the vector of ones and Jp= 1,1, . The design moment matrices M ;(&) of the

invariant minimum bias designs are obtained by replacing m; with 1/3, the solution of the

equations My (&) =M, (&) sty ch (T IL(E)) and tA{ T 'L(E)) of the invariant

minimum bias designs are simplified to
hon(T'L(E)) = min{i—S(ml— mp), %—’- my+ %fl(k— D mn—%k,szz} (1)
and
tr(T‘lL(é))——k{5m4+2(k 1)m22}———k

We first consider the A, -optimal designs. Since mpm<my<m,=1/3, t{(T 'L(&)) is
maximized when g = my=my=1/3. The corresponding maximum is 3k?/2+ k. Equality of

the three non-zero design moments suggests that the support of the /A, -optimal designs
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consist of the vertices and center point of x. It is further required that the weight for the

vertices is 1/3 and that for the center point is 2/3. Consequently the A, -optimal designs
are 2%/ (fractional) factorial designs plus the center point with 1/(2%7/3) and 2/3 weights
allocated to each vertex and the center point. One noteworthy point is that /1, ~optimal

designs put 2/3 weight on the center point and consequently require too many experiments at
the center point. Therefore it is highly recommended that fractional factorial designs be

utilized for constructing A, -optimal designs.
Next we derive the A; -optimal designs. We first need to evaluate the minimum of the

three values listed in the brace of the right hand side of equation (1). Then the values of

design moments maximizing the minimum should be determined. The minimum, i.e.

ch min (T "YL(E)), is 45(my— myp)/4 for the following two disjoint cases:

(i) %m4£m22 and -%—Sm4£%;

(ii) %szz and ms%.

For case (i) it is not difficult to verify that 45(my— m)/4 attains its maximum 5/3
when my=1/3 and wmyp=>5/27. For case (ii) 45(my—mx)/4 is maximized when
myp=1/9 and my=1/5. The corresponding maximum is 1. Next we consider the case
where the right hand side of equation (1) becomes 45m4/4 +45(k— 1) m /4 —5k/4. This
occurs when either (iii) or (iv), mentioned below, holds.

)

(ii1) mps%lg—gjg;—) and %Sm43min(

O |am

’

ol

) ‘ 1 1 1
<-4 i< 4
(v) mp< 9 and s Sms<g.
It can be shown that the values of design moments maximizing ch mm(T—lL(E )) and
corresponding ¢k min (T "'L(&)) for cases (iii) and (iv) are identical with those for case
(ii). Finally ¢k (T " 'L(&)) becomes 9m » when

5(k—9m,)
(v) —W_%Smmggm(; and —é—gm4S%.
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9my, attains its maximum 5/3 when my=1/3 and mgpn=75/27. Therefore ch mn( T 1L(&))
is maximized when m 9 =>5/27 and my;=1/3 and corresponding maximum is 5/3.

These design moment conditions imply that the /1, -optimal designs put all weight on the

points having coordinates (0 and =1 only, i.e, on A;'s where A; denotes the set of points
with j coordinates equal to 0 and the remaining coordinates equal to *1. Appealing to Galil
and Kiefer (1986), we can construct the /1, -optimal designs consisting of Aj’s. A simple

and well-known method is to use Ag, Az—; and A, which are respectively the vertices,

2k axial points and center point of x. The weights for each vertex, each axial point and the

center point are respectively 5/(2%727), 2/27k and 2/3.
4. Second order design accommodating first order design

First order A, -optimal designs allow us to fit a second order model. Therefore, even if

significant lack of fit is found, we can fit a second order model without further experiments.

However, if a first order A, -optimal design is employed and the lack of fit test is

significant, an additional experiment should be performed to fit a second order model. The
problem of designing the additional experiment is considered in this section. Let us suppose

that the experiment was performed according to a first order /i, -optimal design and the lack
of fit test is significant. Then an additional experiment should be designed so that the
augmented design &' enables us to fit the second order model #7,(x, 8#,) optimally in some
sense. In this case we may consider the optimality criteria associated with the information

matrix M(&") for the second order model, where

M(E)= Mu'(fi) M12(5:) '
Mp' (") Mxp(€)

The well-known optimality criteria are A-, D-, E- and G-optimalities which have the
convexity and monotonicity properties. For the purpose of illustration this section considers D
-optimality, the maximization of det(M(&")). Since def M(£")) is invariant with respect to
Gy, it is enough to consider only the invariant second order designs. One method to derive
invariant second order designs from the (fractional) factorial first order designs is to perform
the supplementary experiments at the 2% axial points (*a,0,---,0), ==+, (0,-,*a). Let w
be the weight for the first order design portion in the augmented design. Then the weight for

each axial point is (1 — w)/2k. The corresponding information matrix is given by



348 Joong-Yang Park

1 0’ m;lk’ 0’
meH)=| 0 mh 0 0
maly 0 (my—mp) L+ mul 0
0 0 0 man -
where my = fx?é* = w/3+ a*(1— w)/k, Moy = fx?xfdé' = w/3 and
x x

my = fzx?d5'= w/3+ a* (1~ w)/k. We will determine a and w so that def(M(E")) is

maximized. It can be shown that

det( M(E")) = 3 —(k2+k+4)/2k—2ka 4=, <k2—k+2)/2(1_ w)k—l {khw+3(1— w)aZ}k .

{¥(3— w) — 6k(1 — w)a®+9(1 — w)a?}

is an increasing function of a for (0<a<1. Therefore the D-optimal value of @ is 1 and

the corresponding det( M (£")) is obtained as

det(M(E* )) =3 —(k2+k+4)/2k—2kw (kz—k+2)/2(1 . w)k—l { (k_3)w+ 3}k

{2F(k—3)2(1— w)}.

The optimal value of w is then obtained by equating the derivative of def(M(&")) with

respect to w to zero. Similarly A-, E- and G-optimal second order designs can be
derived.

5. Discussion

This paper considered the optimal designs under A -type design criteria for discriminating
between two linear regression models. Specific /A -type design criteria are determined by the
estimation method. A*-optimalities are to be used for the least squares method, while A
-optimalities are for the minimum bias estimation. However, A -type optimalities for other
estimation methods may also be considered. Since characterization of A;- and /;-optimal
designs are not yet available and the designs invariant with respect to the estimation method
are often useful, the minimum bias designs for estimating the expected response were
suggested. The A-type optimalities for the minimum bias designs were named A’

-optimalities. It was shown that /A -optimal designs could be found within the invariant
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minimum bias designs. First order A, -optimal designs were then derived. A A, -optimal
design can be constructed as the well-known central composite design. The A, -optimal
designs are 2 k=/ (fractional) factorial designs plus the center point. For the case where data
obtained from a first order A, -optimal design shows significant lack of fit, we illustrated
how to construct a second order design accommodating the first order A, -optimal design.
Finally we make some comments on the efficiency of /A, -optimal designs. Such efﬁciency
study is not easy, since ;- and /T,-—optimal designs are not available. Alternatively we
may compare /1, -optimal designs with A ;-optimal designs, even though the / -optimalities
are somewhat irrelevant. /,-optimal designs for £<4 and A,-optimal designs were derived
in Example 2 of Jones and Mitchell (1978). The A;-optimal designs for %<4 consist of Ag,
A;, Ap_y; and A, and the corresponding values of m,, wmy and my are respectively
5/9, 5/9 and 25/81. The A,-optimal designs for A<3 are composed of Ay and A, but
only Ay is concerned with the Aj,-optimal designs for A=4. Therefore the /ly-optimal
designs for k=4 are powerless to detect model inadequacy. Thus a comparison between A, -
and /,;-optimal designs is made for A<4. It can be shown that ch (T 1(g’f YL(E)) and
ch min(T "YL*(&)) of A,-optimal designs are 25/9 and 25/(9+5%), between which 5/3,
ch win (T "YL(E)) of A, -optimal designs, is. If the least squares method is employed, A,
-optimal designs are more efficient than A, ~-optimal designs. If the minimum bias estimation

is used, /A, -optimal designs are more efficient. This is partly because the /i -optimalities are

developed under the assumption that the least squares method is used and partly because the
invariance with respect to the estimation method causes some loss in efficiency. In addition it

should be noted that /;-optimal designs are not available for all practical values of % and
Aj-optimal designs for A<4 require too many support points. These suggest that A’

-optimal designs are useful in practice. However, A*- and 7l -optimal designs need to be
derived at least numerically. Further researches are also necessary for the situations where
more than two and/or higher order regression models are invelved.
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