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A Study on the Group Sequential Methods for Comparing
Survival Distributions in Clinical Trialsl)
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Abstract

In many clinical trials, we are interested in comparing the failure time distribution
of different treatment groups. Because of ethical and economic reasons, clinical trials
need to be monitored for early dramatic benefits or potential harmful effects. Prior
knowledge, evolving knowledge, statistical considerations, medical judgment and
ethical principles are all involved in the decision to terminate a trial early, and thus
the monitoring is usually carried out by an independent scientific committee. This
paper reviews the recently proposed group sequential testing procedures for clinical
trials with survival data. Design considerations of such clinical trials are also
discussed. This paper compares the characteristics of each of these methods and
provides the biostatisticians with the guidelines for choosing the appropriate group
sequential methods in a given situation.

1. Introduction

While it would be much simpler statistically to carry out a clinical trial with just a single
planned analysis of the data at an appropriately prespecified time, it is rarely done in major
clinical trials. The investigator’s responsibility to the study subjects demands that the results
be monitored during the trial. If data indicate that the new treatment is harmful to the
subjects, the investigators have obligation to terminate the trial early or modify the study in
some acceptable way. If these data demonstrate a clear benefit from the new treatment, the
trial may also be stopped early because to continue would be unethical. In addition, if the
differences in primary response variables are so unimpressive that the prospect of a clear
result is extremely unlikely, it may not be justifiable in terms of time, money and effort to
continue the trial. Finally, monitoring of response variables can identify the need to collect
additional data in order to clarify questions of benefit or toxicity that may arise during the
trial. In order to fulfill the monitoring function, the data must be collected and processed in a
timely fashion as the trial progresses.

While the process of repeated significance testing is required for ethical, scientific and
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economic reasons, problems of a statistical nature are raised. (cf. Armitage, McPherson and
Rowe, 1969; McPherson and Armitage, 1971). If repeated statistical tests are performed on
accumulating data at a conventional significance level ( @=0.05), the overall Type I error rate
will be substantially higher than intended. For example, the actual type I error would escalate
to 8% for 2 such analyses and 14% for 5 analyses.

In order to avoid the problem of having such a substantial risk of a false positive result,
various sequential testing procedures have been employed (cf. Armitage, 1975). However, the
sequential models assume that the data will be tested after each pair of subjects or after each
outcome. In fact, many multicenter studies have a data monitoring committee which meets at
regularly scheduled intervals so that decisions to continue or terminate a trial are usually not
made after each event or pairs of events. It would be more practical to consider methods
appropriate for a number of planned analyses being conducted at specified intervals. This led
to the development of group sequential methods and their practical applications to common
clinical trials (cf. Pocock, 1977; O'Brien and Fleming, 1979; Lan and DeMets, 1983). These
procedures are briefly reviewed in section 2, and more details can be found in DeMets (1987)
and Lee (1994-a). In many chronic disease clinical trials, the major endpoint of interest is time
to an event (death, relapse etc.). Generally, in such trials, patients enter the study during
some staggered entry accrual period and the final analysis is conducted after a predetermined
follow-up period. Usually at the final analysis not all the events are observed and thus we
have censored survival data. These studies also monitor for evidence of benefit or toxicity,
and thus are subject to the repeated testing problem. Many authors proposed the group
sequential methods for analyzing survival data (cf Breslow, 1969; Jones and Whitehead, 1979;
Gail, DeMets and Slud, 1981; Tsiatis, 1982; Slud and Wei, 1982; Sellke and Siegmund, 1983;
Slud, 1984; DeMets and Gail, 1985, Tsiatis, Rosner and Tritchler, 1985). Most of these
methods, however, assume that the failure time distribution depends on the treatment variable
and no other external factors. In 1990’s, there have been much progress in the development of
sequential monitoring methods for comparing survival distributions in clinical trials. 1 briefly
review these recently proposed group sequential methods for survival analysis in section 3.
Included are ten methods proposed by Lan and Lachin (1990), Lin (1991, 1992), Gu and Ying
(1993), Keaney and Wei (1994), Lan, Rosenberger and lLachin (1995), Lee and Sather (1995),
Tsiatis, Boucher and Kim (1995), Lin, Shen, Ying and Breslow (1996) and Betensky(1997). By
comparing the contributions and the restrictions of these methods, I provide the guidelines for
choosing the appropriate sequential methods in a given situation.

A fixed duration study accrues patients during the accrual period, and the patients are
followed during the follow-up period until sufficient number of events of interest has been
gathered to test the null hypothesis of no treatment difference. In most clinical trials,
fixed-duration designs are being used even when the accumulating data are analyzed
periodically. If a sufficiently large differences were found between treatments, early termination
of the trial should be considered. The design aspects regarding accrual and follow-up periods
have been discussed (cf. Kim and Tsiatis, 1990; Kim, 1992; Kim, Boucher and Tsiatis, 1995)
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and these discussions are briefly reviewed in section 4.

2. Group Sequential Testing

Instead of pairing individual patients, the group sequential procedure compares groups of
patients accrued during the same period of time. Suppose that we consider K interim analyses
in comparing two or more treatment effects. Let S(%) be the standardized summary statistic
at the k-th interim analysis (k=1, -, K), e.g. the mean treatment difference divided by its
standard error. We plan to stop the trial at /-th interim analysis if [ S(£)| exceeds a chosen
boundary value b, The probabilities 7, (1<k<K) are chosen such that

7[1+...+7[K= a, (21)

where a is the type I error and, under the null hypothesis,
Py{IS(DI<by, -+, | S(—DI< b1, | S(B]D by} = 7, (2.2)

Then it follows that Py{|S(B)|>b, for some 1<k<K }=a. If (5(1),-:-,S(R) follows
asymptotically a multivariate normal distribution for any A< K) and its covariance matrix can
be consistently estimable, then the sequential -boundaries {b,, 2=1,---, K}, which satisfy the
above two conditions, can be constructed recursively using for example the MULNOR program
(cf. Schervish, 1984).

Slud and Wei (1982) suggested that the probabilities 7xy,:-, 7k, summing to a, be
prespecified. Fleming, Harrington and O'Brien (1984) have extended the Slud-Wei procedure to
allow for modification of the choice of K during the course of the trial. Lan and DeMets
(1983) introduced an increasing ‘error spending rate’ function *(#), with @"(0)=0 and
@"(1)=a, which allocates the amount of type I error that can be spent at each interim
analysis, and set 7,= a"(#,) —a"(¢,—1). Here, t; is called the ‘information time’ at the k-th
interim analysis, and is defined as the proportion of the total information from the study that
has accrued by the k&-th analysis. In both methods, the boundary values &, &s,--, bg can be
sequentially constructed as the actual group sizes are observed. Thus, independent increments
of the interim test statistics are not required. Note also that the boundary value &, depends
only on the sizes of the current and past groups as well as the values my,-r, 71, The

Lan-DeMets method allows for changes in frequency and spacing of interim analyses, but the
maximum amount of information needs to be estimated at the start of the trial. Proschan.
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Follmann and Waclawiw (1992) have studied the effects of assumption violations on type I
error inflation in the different group sequential procedures, and have shown that changes in
future monitoring times may substantially inflate the overall type I error with the Slud-Wei or
Fleming~-Harrington-O’Brien approach, but only a little with the Lan-DeMets spending
function approach.

If each individual has only a single response, then the test statistic S(%k) at the k-th
interim analysis behaves like the partial sum of the independent random variables. Hence, the
successive test statistics follow asymptotically a multivariate normal distribution with
independent increments and the form of their covariance matrix is also simplified. A simple
algorithm, developed by Reboussin, DeMets, Kim and Lan (1992), using recursive numerical
integration can be used to obtain the sequential boundaries that satisfy (2.1) and (2.2). This
algorithm implements a framework provided by Lan and DeMets(1983) and allows for flexible
and unequally spaced interim analyses.

Assuming the independent and equal increments, Pocock (1977) suggested setting

b= - =bg=cp, and O'Brien and Fleming (1979) set bk=c3\/—lz(lsksK). The

constants ¢y and cg depend on K and a. Their computation is performed using the

recursive numerical integration by Armitage, McPherson and Rowe (1969). Wang .and Tsiatis
(1987) considered a more general class of boundaries which includes both Pocock and

O'Brien-Fleming boundaries. According to Lan and DeMets (1983), with tk=—-lk?,

2" (H=alog{l1+(e—1)t} gives sequential boundaries similar to those of Pocock (1977) and
a*( t)=2{ 1— d)(z_,,/ Vi )} where @ is the standard normal distribution function and z , is
2

™o

chosen so that Pr(z >z , ) = —g, gives sequential boundaries similar to those of O’Brien
2

and Fleming (1979). Design considerations for the choice of the error spending rate function
have been discussed by Kim and DeMets (1987) and Jennison and Turnbull (1989).

When each patient has repeated measurements or another kind of multivariate observations,
there is no guarantee that the interim statistics have independent increments. Therefore, the
asymptotic multivariate normality of successive test statistics and their covariance matrix need
to be directly derived to construct the sequential boundaries, satisfying (2.1) and (2.2).
Recently some procedures have been proposed for conducting interim analyses with
multivariate observations, and nine methods among them were discussed in detail by Lee
(1994-b).

3. Sequential Monitoring of Survival Data

3.1. Classical sequential methods
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In many clinical trials, we are interested in comparing the survival distribution of different
treatment groups. Generally, in such trials, patients enter the study during some staggered
entry accrual period and the final analysis is conducted after a predetermined follow-up period.
In these studies, early termination of the clinical trial should also be considered if large
treatment differences occur.

The group sequential methods described in the previous section require that the interim test

statistics  (S(1),--+, S(K)) are asymptotically multivariate normal. The recursive construction
of the boundary values at interim analyses is based on this distribution theory. Hence, for a
survival study, many authors have tried to derive the asymptotic distribution of the interim
test statistics. Many researchers have shown that the numerator of the sequentially computed
logrank test behave like a partial sum of independent normal random variables with variance
that grows proportionately to the number of failures. When the patients enter the trial
sequentially and their response times are subject to random censoring, Tsiatis (1982) derived
the asymptotic joint distribution of the score process for Cox’s proportional hazards model (cf.
Cox, 1972), and Sellke and Siegmund (1983) showed that such a process in fact converges
weakly to a time-changed Brownian motion. Slud and Wei (1982) have shown that the
modified Wilcoxon (Gehan) statistics follow the asymptotically multivariate normal distribution
but have dependent increments. Gail, DeMets and Slud (1981) also showed by simulation that
for small samples the group sequential procedure assumptions can be violated using the
logrank statistics but still the overall type I error seems to be fairly robust. Tsiatis, Rosner
and Tritchler (1985) have used the proportional hazards model introduced by Cox (1872) to
allow the dependence of failure time upon other covariates. They have shown that the
sequentially computed score test statistic, derived from a partial likelihcod (cf. Cox, 1975), also
follows asymptotically a multivariate normal distribution.

3.2. Recently proposed methods

Very recently, in 1990’s, there have been much progress in the development of sequential
monitoring methods for comparing survival distributions in clinical trials. In this section, I
briefly review ten recently proposed group sequential methods for survival analysis: Lan and
Lachin (1990), Lin (1991, 1992), Gu and Ying (1993), Keaney and Wei (1994), Lan,
Rosenberger and Lachin (1995), Lee and Sather (1995), Tsiatis, Boucher and Kim (1995), Lin,
Shen, Ying and Breslow (1996) and Betensky(1997).

Lan and Lachin

Lan and Lachin (1990) described a new estimate of the information time, which is defined
as the fraction of total information available at the time of interim analysis, and used the
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estimated information time to implement the group sequential logrank tests in a maximum
duration trial. Total information can be expressed by the number of events to be accrued if
the logrank test is employed. In a maximum duration trial, in which the trial ends when a
fixed period of calendar time has elapsed, the total number of events accrued is unknown at
the time of interim analysis and the information times need to be estimated. Lan and Lachin
proposed to use the fraction of total patient exposure as a convenient surrogate measure of
information, leading to conservative group sequential boundaries. They also investigated by
simulation the properties of the sequential boundaries based on this estimator of information
time.

Lin

Lin (1991) has proposed a sequential testing procedure with multiple time-to-event
endpoints. The proposed test statistic at each interim analysis is a weighted sum of the linear
rank statistics from each endpoint with respect to the marginal distributions of the multiple
endpoints. This class of linear rank statistics contains logrank, Peto-Prentice-Wilcoxon,

Gehan-Wilcoxon, and more generally the G” statistics of Harrington and Fleming (1982). The
weights can be chosen to maximize asymptotic power against a specified alternative (cf. Wei
and Johnson, 1985). The multivariate asymptotic normality of the test statistic is derived using
the same technique as in Wei and Lachin (1984), and the recursive construction of the
boundary values at interim analyses, which satisfy (2.1) and (2.2), is based on this distribution
theory. This method also works well with the accelerated failure time model (cf. Kalbfleisch
and Prentice, 1980) as well as the proportional hazards model. An application is given in Lin
and Wei (1991).

Lin

Lin (1992) proposed a group sequential test of no treatment difference which adjusts for
other covariates than the treatment variable with accelerated failure time model, which relates
covariates linearly to the logarithm of the failure time. The proposed method can be
considered as a useful alternative to the sequential method by Tsiatis, Rosner and Tritchler
(1985) because Tsiatis—~Rosner-Tritchler method adjusts for other covariates with the Cox
proportional hazards model. Actually, these two methods are the same except that the test
statistic is calculated on a ‘transformed’ time scale. This accelerated failure time model is
especially appealing to medical investigators due to its straightforward interpretation, and there
exist semiparametric efficient parameter estimators for this model.
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Gu and Ying

Gu and Ying (1993) proposed a Buckly-James-type score process for repeated significance
tests of regression hypothesis with staggered entry data under general right censorship. Their
research was motivated by that Buckly-James method (1979) is an appropriate extension of
the least squares method and is a valuable alternative to Cox’s partial likelihood method for
regression data especially when the accelerated failure time model is more appropriate than the
proportional hazards model. By using the martingale theory of the counting process, they have
shown that the score process is asymptotically equivalent to a multidimensional Gaussian
process with independent increments. The recursive construction of the boundary values at
interim analyses, which satisfy (2.1) and (2.2), is based on this distribution theory. The score
process can be interpreted as a weighted comparison of transformed survival times, and this
method is especially suitable for the accelerated failure time regression model. Through
simulation studies, they have found that the proposed test is superior when the underlying
error distribution is normal, and the log-rank method is superior when the error distribution is
extreme value.

Keaney _and Wei

Keaney and Wei (1994) proposed tc use differences or ratios of estimated median survival
times repeatedly during the two-arm survival study. They presented a repeated confidence
interval estimation procedure for the difference or ratio of median survival times for two
treatment groups. It can be considered as a -generalization of the method by Jennison and
Turnbull (1985), which constructs repeated confidence intervals for the median survival time of
a single group of patients by inverting a series of sign tests, to the case for testing the
equality of two medians. They have demonstrated that sequentially computed differences of
two median survival times follows asymptotically multivariate normal distribution, and used a
simple resampling method (cf. Parzen, Wei and Ying, 1994) to estimate the asymptotic
covariance matrix without involving any subjective nonparametric functional estimate.
Boundary values at interim analyses are recursively constructed to satisfy (2.1) and (2.2). The
proposed method is purely nonparametric like the sequential logrank test and can be easily
modified to obtain repeated confidence intervals for other quantiles.

Lan, Rosenberger and Lachin

Lan, Rosenberger and Lachin (1995) have described sequential monitoring of data using the
Peto-Peto-Prentice Wilcoxon statistic (cf. Peto and Peto, 1972, Prentice, 1978) in a maximum
duration trial. This statistic, like logrank statistic, has nice property that sequentially computed
statistics form a Brownian motion process, but the information is not easily expressible in
terms of number of events. They provided guidelines for estimating the information fraction in
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a maximum duration trial when this statistic is employed. When there is a relatively low
event rate or the survival time is approximately exponential, they recommended estimating the
information time as though the logrank statistic were used.

Lee and Sather

Lee and Sather (1995) presented both parametric and nonparametric sequential testing
procedures for clinical trials where the main interest is in testing equality of the cured
proportions between two treatments. The parametric procedure is based on the mixture model,
described by Farewell (1982), which assumes a logistic model for the cured proportion and a
Weibull model for the failure distributions among those who are not cured. The nonparametric
procedure is based on the optimal linear rank test, proposed by Gray and Tsiatis (1989),
which uses the inverse of the left-continuous version of the pooled Kaplan-Meier estimator as
the weighting function among the weighted logrank tests. In both procedures, construction of
the sequential boundaries is based on the asymptotic multivariate normality of the sequentially
computed test statistics and their covariance matrix. These methods are especially useful in
the pediatric cancer clinical trials where there are excellent therapeutic results in a number of
different malignancies. They emphasized that either of these tests should be considered only if
there is a reasonable a priori evidence of belief that stable plateaus in the survival curves
would occur.

Tsiatis, Boucher and Kim

Tsiatis, Boucher and Kim (1995) have recently derived the joint distribution of sequentially
computed score tests and maximum likelihood estimates for general parametric models of the
survival distribution, where the data are subject to censoring and staggered entry. They
represented the sequentially computed score test as a stochastic integral of a counting process
martingale (cf. Fleming and Harrington, 1991), and their sequential tests and estimates have
an independent increments structure. This result allows for using the general group sequential
methodologies discussed in section 2, and these methodologies can be used immediately for
any parametric model of the survival distribution. A simulation study is also included to
illustrate how these methods work with moderate sample sizes. In the simulation, they applied
Lan-DeMets method with both O’Brien-Fleming-type and Pocock-type use function, and
found that the empirical results are very close to the expected results for both the score test
and the Wald test.

Lin, Shen . Ying and Breslow

Lin, Shen, Ying and Breslow (1996) proposed a sequential method based on the
Kaplan-Meier estimator. They have shown that the Kaplan-Meier estimators for the survival



Group Sequential Methods for Survival Clinical Trials 467

function (or the Nelson-Aalen estimators for the cumulative hazard function) calculated at
different calendar time points follow the asymptotically multivariate normal distribution.
Although this method is designed for the sequential testing in one-sample case, it is
straightforward to extend this result to the two-sample case where the differences between
two estimators at each interim analysis are used. Together with the methods by Lee and
Sather (1995), the proposed method is useful when a long-term survival rate is the parameter
of primary interest. In comparison with the Lee-Sather methods, the proposed method has
advantages that we do not parameterize the failure time distribution or impose the proportional
hazards structure.

Betensky

Betensky (1997) proposed a simple sequential procedure for comparing survival data from
three treatments with the goal of eventually identifying the best treatment. She has applied
the methods developed for the sequential analysis for the three treatment groups with normal
responses (cf. Siegmund, 1993) to the more complicated case of censored survival data. The
procedure consist of two stages of testing. The first test is a global test for detecting on
overall treatment effect. If a treatment effect is detected, the worst treatment is eliminated and
the second sequential test attempts to identify the better of the two remaining treatments. She
has shown that the interim test statistics behave like the sum of two-dimensional standard
Brownian motion, and this result allows for the sequential procedures described in section 2
for normal responses to be immediately applied to survival data. Simulation study was
conducted to see the performance of the ‘procedure and assess its robustness against
departures from the assumption of local alternatives. Design considerations were also
discussed.

3.3. Discussion

The group sequential methods described in section 2 require the interim test statistics
(S(1), -+, S(K)) follow the asymptotically a multivariate normal distribution. The above ten
methods derived the sequential version of the different types of test statistics under various
situations, but all of them used the asymptotically multivariate normality of the interim test
statistics and their consistently estimated covariance matrix. In most cases, martingale theory
of the counting process made a great contribution to the derivation of the multivariate
normality (cf. Fleming and Harrington, 1991). That is, the interim test statistics were
represented by the sum of identically independently distributed random variables and the
multivariate central limit theorem was applied to derive the multivariate normality. The
boundary values at interim analyses, which satisfy (2.1) and (2.2), can be recursively
constructed based on this multivariate normality.
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It would be worthwhile to summarize each of the above methods according to the type of
interim statistics (cf. Table 1). It can provide the guidelines for choosing the appropriate
methods in a given situation since each test statistic has its own strong and weak points.

The accelerated failure time model can be considered as a useful alternative to the Cox’'s
proportional hazards model. It is especially appealing to medical investigators due to its
straightforward interpretation. When the accelerated failure time model is more appropriate,
the readers need to consider using the methods by Lin (1992) and Gu and Ying (1993). The
method by Lin (1991) also works well with the accelerated failure time model as well as the
proportional hazards model.

Table 1. Interim test statistics used in the methods

In some clinical trials situations, one may find that a large portion of the patients never
experience the adverse outcome event of interests, and there appears to be no evidence of that

Test statistics Methods Characteristics
weighted Lan and Lachin (1990) logrank
logrank Lin (1991) G? class
statistics Lan, Rosenberger and Lachin (1995) Peto-Prentice
Lee and Sather (1995) Gray-Tsiatis cure statistics
score Lin (1992) accelerated failure time model
process Gu and Ying (1993) Buckley-James type
Lee and Sather (1995) Farewell mixture model
Tsiatis, Boucher and Kim (1995) general parametric model
Betensky (1997) three treatment groups
survival Keaney and Wei (1994) median survival times
estimates Lin, Shen, Ying and Breslow (1996) cumulative hazards estimates
(or Kaplan-Meier estimates)

event occurring after a certain period of follow up. One area where this occurs frequently is
in clinical trials of pediatric cancer where there are excellent therapeutic results in a number
of different malignancies. When the main interest is in the comparison of two cure rates, the
methods by Lee and Sather (1995) and Lin, Shen, Ying and Breslow (1996) are useful for
sequential testing. Table 2 also summarizes the background and the applications of each
method.
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Methods

Background and/or Applications

Lan-Lachin (1990)

Lin (1991)

Lin (1992)
Gu-Ying (1993)
Keaney-Wei (1994)
Lan-Rosenberger-Lachin

(1995)
Lee-Sather (1995)

- Tsiatis-Boucher-Kim
(1995)
Lin-Shen-Ying-Breslow
(1996)

Betensky (1997)

based on logrank statistic
appropriate for proportional hazards model

based on G’ class

allows for multiple endpoints

appropriate for proportional hazards model

as well as accelerated failure time model
appropriate for accelerated failure time model
appealing due to straightforward interpretation
based on Buckley-James type statistic
appropriate for accelerated failure time model
based on median survival times

estimate repeated confidence interval

based on Peto-Prentice ststistics

estimate information fraction time

test equality of cure rates

based on Farewell mixture model (parametric)
based on Gray-Tsiatis cure statistics (nonparametric)
based on the score statistic

allows for general parametric model

test equality of long-term survival rates
based on the cumulative hazards estimates

or Kaplan-Meier estimates

compares three treatment groups

based on two-stage testing

4. Design of Sequential Survival Clinical Trials

The issues of determining study duration for clinical trials with survival data have been

addressed by several researchers (cf. Pasternack and Gilbert, 1971; George and Desu, 1974;
Rubinstein, Gail and Santner, 1981; Lachin, 1981; Freedman, 1982). Recently, Park, Kim and
Lee (1997) have reviewed the existing literature concerning commonly used sample size
formulae in the design of randomized clinical trials with survival endpoints, and compared the
assumption, the power and the sample size calculation of these methods. They also compared
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by simulation the expected power and the observed power of each method under various
circumstances, and provided the guidelines in terms of practical usage.

In many clinical trials, there is a set of well-known prognostic factors that are used for
stratification in the randomization scheme to avoid confounding the treatment effect with an
imbalance in those factors. Many authors have proposed sample size formulae for this case
(cf. Bemnstein and Lagakos, 1978; Schoenfeld; 1983; Palta and Amini, 1985; Lachin and
Foulkes, 1986). Kim, Park and Lee (1997) have also reviewed and compared these methods
when the stratification should be considered.

While there have been considerable attention to the design of fixed duration survival studies,
only a few authors have paid attention to the design of sequential clinical trials with failure
time data. The study duration in clinical trials with failure time data consists of two periods:
an accrual period during which patients are entered serially and the follow-up period during
which no patients are entered, but those who already entered are followed until failures occur
or until the time of study termination, subject to random loss to follow up. When we refer to
a group sequential design for a clinical trial with failure time data, we mean the specification
of (a) the use function, (b) the durations of accrual and follow-up periods, and (c) the number
and times of interim analyses. Although the use function approach as described by Lan and
DeMets (1983) maintains the desired significance level without having to specify the number
and times of interim analyses, these interim times need to be specified because the number
and times of interim analyses have some effect on the power and early stopping properties of
these sequential methods.

In a maximum duration trial, in which the trial ends when a fixed period of calendar time
has elapsed, the total number of events accrued is unknown at the time of interim analysis
and the information times need to be estimated. Under the maximum duration trial, Kim and
Tsiatis (1990) proposed a unified design procedure based on the use function approach by Lan
and DeMets (1983) and the fixed duration design by Rubinstein, Gail and Santner (1981). The
have also compared different group sequential designs in terms of various expected stopping
times, and provided guidelines for selecting appropriate design specifications. Kim (1992)
extended the Kim-Tsiatis procedure to allow for the stratified randomization and the unequal
patient allocation between treatments. His method is based on the use function approach and
the fixed duration design by Bernstein and Lagakos (1978). While the above two methods are
proposed for a maximum duration trial, Kim, Boucher and Tsiatis (1995) proposed a design
procedure for maximum information trials, in which the maximum amount of information is
fixed, and investigated the properties of maximum information trials for different group
sequential boundaries. They also illustrated how to maintain the type I error in maximum
duration trials by using correlation structure of the sequentially computed logrank statistics,
and compared maximum information trials and maximum duration trials.
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5. Concluding Remarks

Before 1990, most of the group sequential methods for comparing survival distributions
assume that the failure time distribution depends on the treatment variable and no other
external factors. Nonparametric methods are also based on the typical logrank -statistics.

In 1990’s, however, many methods have been proposed for comparing survival distributions
with various types of test statistics such as median survival times, cumulative hazards

estimates, Buckley-James type statistics and the G° class of logrank statistics. Some methods
also allow for many types of models like accelerated failure time model, mixture model and
the general parametric models as well as the proportional hazards model. As discussed in
section 3, each of the test statistics and the models has its own strong and weak points,
and thus the biostatisticians should be careful to choose the most appropriate methods in
their clinical trial.

While there have been much progress in the group sequential testing procedures, only a few
researchers have paid attention to the group sequential design of the survival clinical trial
Most of the above testing procedures are also based on the maximum duration trial, in which
the trial ends when a fixed period of calendar time has elapsed. Development of the group
sequential designs of the maximum information trial and the testing procedures based on the
maximum information trial could be a possible future research.
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