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Abstract

Motivated by bioequivalence studies which involve comparisons of pharmaceutically
equivalent dosage forms, we propose a more general decision rule for showing
equivalence simultaneously between multiple means and a control mean. Namely, this
testing procedure is concerned with the situation in that one must make decisions as
to the bioequivalence of an original drug product and several generic formulations of
that drug. This general test is developed by considering a spherical confidence region,
which is a direct extension of the usual ¢-based confidence interval rule formally
approved by the U.S. Food and Drug Administration. We characterize the test by the
probability of rejection curves and assess its performance via Monte-Carlo simulation.
Since the munufacturer’'s main concern is the proper choice of sample sizes, we
provide optimal sample sizes from the Monte-Carlo simulation results. We also
consider an application of the generalized equivalence test to a repeated measures
design.

1. Introduction

As has been pointed out in Sung (1994), in the conventional statistical hypotheses testing, a
researcher’s own purpose is to reject the null hypothesis in most cases. Thus after establi-
shing appropriate null and alternative hypotheses, one may conclude, based on the sample
collected, that he reject or fail to reject the null hypothesis. Unfortunately, however, failing to
reject a null hypothesis is not proof that the null hypothesis is true. It denotes only that there
is not sufficient evidence to conclude that the null hypothesis is false. This testing principle
imposes a serious logical problem on researchers whose purposes are to show that the null
hypothesis is true.

This kind of arguments on the logical problem present in statistical tests of hypotheses is
not new. Note, for instance, that the same argument holds for the Pearson’s goodness-of-fit
test. Refer to Inman (1994) for more details on the debates exchanged between K. Pearson
and R. A. Fisher.
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Accordingly it is quite apparent that we need a rather different decision rule if we wish to
show that the null hypothesis is true.

This type of problem is prevalent, especially, in pharmaceutical industries and regulatory
agencies such as the US. Food and Drug Administration (FDA) dealing with approval of
newly-developed generic pharmaceutical products. In this arena one must make decisions as to
bioequivalence of pharmaceutical products manufactured by different pharmaceutical firms.

The FDA officially defined that biocavailability refers to the rate and extent to which the
active drug ingredient or therapeutic moiety is absorbed from a drug product and becomes
available at the site of drug action. Also, as Meyer (1988) pointed out, relative bioavailability
refers to a comparison of two or more dosage forms in terms of their relative rate and extent
of absorption.

Accordingly, two dosage forms that do not differ significantly in their rate and extent of
absorption are termed bioequivalent.

Hence, two bioequivalent formulations must make the active ingredient available in the
circulating blood and should not differ in their therapeutic efficacy. The area under the
concentration-time curve (AUC) is a favorite measure of bioavailability as Metzler (1974)
discussed. ‘

Much efforts have been undertaken to develop a decision rule based on statistical principles
deciding if a test formulation is bicequivalent to a reference formulation.

Among the several decision rules proposed so far by Metzler (1988, 1991), Westlake (1972,
1976), Rodda and Davis (1980), Mandallaz and Mau (1981), and Anderson and Hauck (1983),
the simplest and most intuitive test for bioequivalence is to use the usual ¢-based confidence
intervals:

Let Xi,X2-+,X. be a random sample from N(g, 6%). We wish to infer that g is equivalent
to a known go. Note again that in this situation the purpose of inference is to show that the
null hypothesis is true. In this case we obtain the t-based 100(1— @)% confidence interval C

with endpoints x =+ tue1.ap2 (s/Vn), where x is the sample mean and s° is the sample

variance. If C is contained in a predefined acceptance interval E={(puo— & ,¢0+ 8), 8 >0, then
we accept the claim of bioequivalence. Otherwise the claim of bioequivalence should not be
accepted.

Extending the concept of decision rules for showing bioequivalence, Huh (1994) proposed a
new testing procedure of showing equivalence among k independent samples in a more
general context with Ho: p1= po=--= pi, where p; i=1,"--, k, is the ith population mean, and
Sung (1994) suggested proper sample sizes for the independent two-sample case via Monte-
Carlo simulation.

Though Huh’s decision rule is directly applicable to arbitrary number of independent
samples, it is unfortunately not easy to explore its behavior exactly, nor to provide an
appropriate statistical assessment of its performance even with the aid of computer simulation.

In this paper we propose a generalized equivalence testing procedure to deal with a situation
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where several test formulations are compared simultaneously to a reference formulation. This
test is a direct extension of the usual t-based confidence interval rule and can also be viewed
as a modified version of Huh's rule.

We characterize the test by the probability of rejection (PR) curves and assess its perfor-
mance via Monte-Carlo simulation and determine optimal sample sizes for equivalence test.
We also consider an application of the test to a simple repeated measures design.

It is apparent that this type of equivalence testing procedure can be applied to various fields
where assurance of quality equivalence is needed.

2. Simultaneous Test for Equivalence

Suppose that we draw a sample of size n from each of k independent normally distributed
populations, respectively; ie., we assume Y;~N(g;, 0'2), i=1,-k; j=1,--,n. Denote the value
of the reference formulation as ..

We wish to provide a decision rule to test equivalence: Ho: u1= po=-=pr=p.

We predefine the acceptance region as follows:

E={(ﬂ1,'".ﬂk): g(ﬂi—ﬂc)z/ks 82} 8=0

That is, E consists of k-dimensional vectors (u1,--+, ) with distance less than or equal to
SVE from (e, ue).

From the fact that -g(?,--ui)z/k ~ (In)F & Kn—1), Where s” is the pooled sample vari-

ance, the 100(1—«) confidence region for (1, -, #x) can be constructed as follows:

o [P 2 (¥ )k < (/) F k-

Hence if (g1, ) satisfying C also satisfies E, then we accept the null hypothesis; that is,
we accept the claim of equivalence.
Since (g1,*-,ux) satisfying E are interior points of a sphere with center (g, -, z:) and

radius V £(s?/ %) F 4 ptn-1).« , OnE can obtain the following simple rule:

Y.—pu,)? [ 2
Accept equivalence if \/Z(——;——#—c—)— + %Fk,k(,,_l),a <8 2.1)

The decision rule using the usual f-based confidence intervals for evaluating bioequivalence
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suggested by Metzler (1974) and Westlake (1972) is a special case of (2.1) for which k=1.

3. Simulation: PR Curves and Sample Sizes

In order to assess the performance of the bioequivalence testing rule (2.1), we utilize a
Monte-Carlo simulation study.

For convenience we let g. to be 1 and k=2 sets of n random variates with mean d and
standard deviation o are generated using a normal random number generator RANNOR in
SAS 6.11 software.

For k=I1(1)5 we selected 0.1(0.1)0.3 as o, —0.3(0.01)0.3 as d, 2(2)30, 35, 40 as the sample
size n, 0.1(0.05)0.25 as &, and 0.1 and 0.05 as the significance level @. Note, in particular,
that the values of o correspond to 10% to 30% of the coefficients of variation (CV),
respectively.

For each combination of simulation parameters 10,000 runs are repeated and relative
frequencies of rejecting the equivalence claim are calculated to produce the PR curves.

Specification of (1, -, #x) needs a special attention.

In order to generate ui's, i=1,-*k, we used the transformation of Mustard (1964) to spheri-
cal coordinates, namely,

¢y = 1+dsinésind, --- sinf,_,

yy = 1+ dsinésinf, --- sin §p_4cos 85—

Yp—1 = 1+ dsinf,cos b,

s = 1+ dcos§,

where d is a candidate value of 8VE.

Typical forms of PR curves for some combinations of parameters are given in Figure 1 to
Figure 8.

Figures 1 to 3 show the behavior of the PR curves by varying the sample size for §=0.2,
o =0.1, CV=10%. Specifically, Figure 1 is for k=1 and so are Figure 2 and Figure 3 for k=2,
3, respectively.

Figures 4 to 6 show identical situations as in Figures 1 to 3 except that the CV is set to
20%:; ie., we are dealing with the case of larger data variation.

Figure 7 illustrates the situation of using a significance level of 0.05.

Figure 8 shows the behavior of the PR curves by varying the & values for a fixed sample
size of 10 when k=3. a =0.1, CV=20%.
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Figure 1. k=1, §=02, =01, CV=10%; n=4,5, 6, 7
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Figure 2. k=2, 6=02, ¢=01, CV=10%; n=3, 4.5, 6
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Figure 3. k=3, 6=02, ¢=0.1, CV=10%; n=2, 3, 4, 5
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Figure 4. k=1, 6=02, ¢=01, CV=20%; n=10, 12, 14, 16
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Figure 5. k=2, 6=02, a=0.1, CV=20%; n=9, 10, 12, 14
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Figure 6. k=3, =02, =01, CV=20%; n=8. 9. 10. 12
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Figure 7. k=1, §=02, a=005 CV=20%; n=38, 9, 10, 12
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Figure 8. k=3, n=10, ¢=0.1, CV=20%; 6=0.1, 0.15, 0.2, 0.25
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A desirable PR curve, in general, should approach rapidly to zero probability of rejecting
equivalence when the true relative availability is around 1, and should approach to probability
one when the relative availability is at the boundary or outside the preassigned acceptance
region.

From the PR curves one may observe some apparent facts that the PR curves move
downward (i) as & increases, (ii) to 0 around the relative availability of 1 as the sample size
n becomes large, (iii) as the data variation represented by the CV becomes small, and (iv) as
the significance level @ increases.

The only FDA guideline concerned about the bioequivalence decision rules requests that
upto 20% difference of mean relative availability is allowed with a protection level of 95%,
when k=1. Figures 1 to 8 meet the requirement satisfactorily. Moreover, the PR curves pass
through (1—a/2k) point of probability of rejecting equivalence when the true relative
availability is at the boundary. On this phenomina, refer to Huh (1994).

The optimal sample sizes for the equivalence test when &=0.2 are given in Table 1. Note
that 8 =0.2 is usually the most practical choice.

Table 1. Optimal sample sizes for equivalence test when &=0.2

n
a k | CV=10% | CV=20% | CV=30%
1 5 14 30
2 4 12 25
01 | 3 3 10 22
4 3 9 20
5 3 9 19
1 6 17 37
2 5 14 28
005 | 3 4 12 24
4 4 10 22
5 3 10 20

4. An Application to Repeated Measures Design

The most common type of experimental design encountered in bioequivalence studies is the
crossover design. Note that at here only the simplest crossover designs such as the three-
period crossover design are considered.

The large~sample multivariate confidence region based on the usual Hotelling's T statistic
is given as follows:
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n(y—p)y S (y—p < 22, (4.1)

Here, S is the sample variance-covariance matrix, ; the sample mean vector, and g the
population mean vector.

The crossover design belongs to repeated measures designs which require a special covari-
ance structure of sphericity. From the sphericity assumption the population covariance matrix

is of the form: X,z = [(1—p)I,+p11°], where 1 is the column vector of 1’s and ¢ is
the common correlation coefficient of treatment pairs.

A maximum likelihood estimator of e is given as: p=(F—1)/[F+(k—1)), where F is the
usual ratio of the between-subjects mean square to residual mean square (MSE). We take

MSE as 82 which is denoted by s%
The formula (4.1) can be written as

(n /s [17Z(—fi—ﬂ,-)2+4211§(—17,-—u,')(—l’_,-—/z,-)] < X% 42)

where p=(1-2 o+ pk)/[(1— 0)1— o+ k)], g=— o/[(1— )(1— o+ Pk)]. The left-hand side

of (4.2) is a confidence ellipsoid with axis length V A; xi'a/ n, where A,’s are the eigenvalues
of S.

Hence a conservative test rule for equivalence for repeated measures design is to accept the
claim if

V(Y= p)Y e + Vmax 4,1V 22./n < 6.
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