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Abstract

When the sample size is small the robust minimum Hellinger distance (HD)
estimator can have substantially poor relative efficiency at the true model. Similarly,
approximating the exact null distributions of the ordinary Hellinger distance tests with
the limiting chi-square distributions can be quite inappropriate in small samples. To
overcome these problems Harris and Basu (1994) and Basu et al. (1996) recommended
using a modified HD called penalized Hellinger distance (PHD). Lindsay (1994) and
Basu et al. (1997) showed that another density based distance, namely the negative
exponential disparity (NED), is a major competitor to the Hellinger distance in
producing an asymptotically fully efficient and robust estimator. In this paper we
investigate the small sample performance of the estimates and tests based on the
NED and penalized NED (PNED). Our results indicate that, in the settings considered
here, the NED, unlike the HD, produces estimators that perform very well in small
samples and penalizing the NED does not help. However, in testing of hypotheses, the
deviance test based on a PNED appears to achieve the best small-sample level
compared to tests based on the NED, HD and PHD.

1. Introduction

Let Xi, Xz, ..., Xa be a random sample from a discrete distribution having a probability
mass function (pmf) g €@, the class of all pmf’s. Let T 4={ f4 : § =6} C G be a parametric
family of distributions involving the parameter 6. The model is said to be correctly specified if
the true data generating density g belongs to the assumed model T4 Several authors
including Beran (1977), Tamura and Boos (1986), Simpson (1987) and Lindsay (1994) showed
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that the minimum Hellinger distance estimator (MHDE) of § is a very attractive robust
alternative to the maximum likelihood estimator (MLE) since it is asymptotically as efficient
as the maximum likelihood estimator (MLE) at the true model while achieving strong
robustness properties under data contamination. However, when the sample size is small, the
relative efficiency of the MHDE can be substantially poor at the true model.- To overcome this
problem Harris and Basu (1994) modified the Hellinger distance and defined a class of
penalized Hellinger distances (PHDs). This class is indexed by a parameter, which controls
the weight on the empty cells in the penalized Hellinger distance. Harris and Basu
recommended a particular member of this family which is found to produce an estimator
having much smaller empirical mean square error (than the MHDE) in small samples at the
true model, without sacrificing robustness properties.

Simpson (1989) and Lindsay (1994) studied tests based on the Hellinger distance that are
analogues of the likelihood ratio test (LRT). Basu et al. (1996) considered Hellinger distance
based analogues of Rao tests and Wald tests. When the assumed model is correct, in small
samples the exact null distributions of these Hellinger distance tests may be quite different
from the limiting chi-square distributions. This can lead to very poor level and power values
of the Hellinger distance tests in small samples compared to the likelihood based tests when
the assumed model is correct. Empirical results of Basu et al. (1996) indicated that the tests
based on a PHD can overcome the above problem without compromising the robustness
properties. Park et al. (1995) have studied the class of combined and penalized blended
weight Hellinger distances.

Lindsay (1994) introduced the minimum negative exponential disparity estimator (MNEDE)
as a member of a general family of density based minimum distance estimators that contains
the MHDE as a member. Results of Lindsay (1994), Basu and Lindsay (1994), Basu and
Sarkar (1994) and Basu et al. (1997) showed that the MNEDE is an excellent competitor to
the MHDE within the class of robust and first order efficient estimators. Moreover, the
MNEDE is robust not only against outliers but also against inliers (defined as values with
less data than expected), a property not shared by the MHDE (Lindsay 1994, Basu et al
1997). Under a discrete model the unobserved values of the sample space having empty cells
are common and represent extreme cases of inliers. This motivated us to investigate the small
sample performance of the estimators and tests based on the negative exponential disparity
(NED) and to examine the need for considering penalized negative exponential disparities
(PNED).

The rest of the paper is organized as follows. In Section 2 we briefly discuss the NED, and
related works. In Section 3 we introduce penalized disparities in general, which include the
PHDs and PNEDs as special cases. Section 4 contains small sample results for the MNEDE
and minimum PNED estimators (MPNEDE) in Poisson and geometric models. In Section 5 we
present small sample results for tests based on the NED and PNEDs. Section 6 contains some
concluding remarks.
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2. The Minimum Negative Exponential Disparity Estimator

For a random sample X;, X ..., X, from a discrete population let d,(x) denote the
proportion of Xi's having the value x. Let the assumed parametric family J &~ fs:6 €6} C
G have a countable support. Let 8(x) = 8(d, 0,%) =(d(x)— fo(2))/ fo(x), calleci the Pearson
residual at the value x (Lindsay 1994), which depends on the data and the parameter 6. Let G
be a thrice differentiable, strictly convex function with G(0) = 0. Then, the nonnegative
disparity measure D, corresponding to G, between the data density d, and model density f; is

defined as

D = D(d,, )= Sa(-2D LoDy, @

A minimizer of (2.1) is called the minimum disparity estimator. The MLE of § minimizes
the likelihood disparity (LD)

d,(x)
ledn(x)ln( 7.0 )+ (fex) — d, (%)), (2.2)

which is obtained by letting G;p(8) = (84 1) n(d+1)— 6 in (2.1). The MHDE minimizes the

distance

250V d, (0~ V (0], (2.3)

obtained by putting Gup(8) =2[ (8+1)?—11% in (21). When G rep(8)= exp(—8—1+34,

(2.1) defines the negative exponential disparity

NED(g, 6)= 3] exp(— 2B ) o B T 24)

and its minimizer is the MNEDE. Lindsay (1994, Section 7.2) and also Basu et al. (1997,
Section 2.2) explained why the complex looking NED produces an estimator which is
asymptotically fully efficient, and robust against both outliers and inliers. The minimum
disparity estimation equation, under differentiability of the model, has the form

aD 37 e(x)
—56 — ZxA(a(x))_gT ={,

where
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A(O)=(8+1)G(8)— G(9) (25)

and G(8) is the first derivative of G(8). The function G(8) can be redefined (standardized),
without altering the estimating properties of the disparity D, so that its A(8) function, defined
by (25), satisfies A(0) = 0 and A(0) = 0, where A(8)denotes the first derivative of A(4).
The function A(8) is an increasing function on[—1,00) and is known as the residual
adjustment function (RAF) of the disparity D. The shape of the RAF controls most of the

theoretical properties of the minimum disparity estimators. Note that disparities (2.2), (2.3) and
(24) are defined in a manner that makes them asymptotically equivalent and the

corresponding G(8) functions standardized. This is why we have the —§ term in Grp(9), the
multiplication factor 2 in Gyp(6), and the + 6 term in G npp ().

The form of the RAFs for the likelihood disparity, HD, and NED are given by Ap(8)=34,
Agp(8)=2[(5+ DY2-1] and A ypp(8)=2—(2+ dexp(—35), respectively. A graphical
display of these three RAFs can be seen in Figure 1.

A{delta)

delta

Figure 1. The Residual Adjustment Functions for LD, HD and NED

The graph shows that the RAFs for the HD and the NED heavily downweight large
positive Pearson residuals (corresponding to the outliers in data), ie., A(8) << 8. However, the
HD magnifies the effect of large negative Pearson residuals which define the inliers in data.
On the other hand, the RAF for the NED has a downweighting effect on large negative
Pearson residuals as well, ie., |A(8)|<|8l. Thus, the shape of the RAF explains why the
MNEDE is robust against both outliers and inliers while the MHDE is robust against outliers

only.
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3. Penalized Disparities

3.1. Estimation
Harris and Basu (1994) defined the penalized Hellinger distance (PHD) family as

PH(d,, f)=2 22 (V d()—V fo(a)?+2h 20 fi(2) (3.1)

where h i1s a real number. We can generalize the above definition of a family of penalized

disparities (PDs) corresponding to any general disparity generating function G{(8) as follows:
d,
PD(d,, fo= 3, GBIy w1 6- DR 3 i G2)

Note that for HD, Gyp(—1) = 2 and (3.1) is a special case of (3.2). For h = 1, (3.1) gives the
ordinary Hellinger distance

2 2,V a0V i)' +2 2 fulx),

of (2.3). When h = 0.5, (3.1) generates

2 B GO—VT + 2 S,

and this member of the PHD family was recommended by Harris and Basu (1994) for efficient
and robust estimation for small sample sizes, and by Basu et al. (1996) for testing of
hypotheses in small samples. Following the arguments of Harris and Basu (1994), one choice
of h in (3.2) is given by h = 1/G(-1) since then the PD puts the same weight (equal to one)
on the empty cells as the likelihood disparity of (2.2) that generates the MLE.

We now redefine the index parameter of (3.1) and (3.2) by A= Gyp(—1)k2. Then (3.1) and

(3.2) are given by

PHD(d,, f)) =2 25 (V () =V fo(a))'+2 20 fo(x), (33)

and

PD,= PD(d,, fo= 3, GO D00 S g

(3.4)
respectively. The PD;, (for A=1.0) in the PD family for any given G(J) can be expected to
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play the same role as the PHD,, (fof A=1.0) in the PHD family. In the case of the NED, the
family of PNEDs is given by

. J)—
PNED;= d,§*0 GNED(W)f&(x) +A d'g;=0fe(X). 4 (35)

Following the arguments of Harris and Basu (1994), it can be shown that minimizing a
general disparity D is equivalent to maximizing a penalized Kullback-Leibler divergence
(Kullback and Leibler, 1951). To see this, for x such that d,(x) #0, define

70) = dy (e — G- Ty Aula) 36

a data driven modification of the model density fo(x). Let KL(d,,f;) denote the
Kullback-Leibler divergence between d, and £, defined by

KL(d,, f= 2 dn(2)in( dlx) )

1= So(%)
Then, the disparity D can be expressed as

p=X6(-EI LD - kra, o+ 3 Ao,

Thus the disparity D can be thought of as a penalized Kullback-Leibler divergence between
d, and f;, where the penalty is d;; of,g(x). Note, however, that the modified function f5 is
a\X) =

not a proper density unless d,{(x) = f¢(x) for all x.

3.2. Testing
Consider the problem of testing

H,; 0= 0, against H,; +4,. 3.7

Basu et al. (1996) considered three classes of tests corresponding to the likelihood ratio test
(LRT), the Rao test and the Wald test based on the PHD. One can define these tests based

on any penalized disparity (3.4). In particular, we do this for the PNED,. Let @Gm, 4 denote
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a value of § that minimizes (3.5). Let I, denote the Fisher information about 6 in f¢(x). The

deviance test statistic for the PNED; has the form 2n[ NED;(d,, fs)— NED\(d,,fq;_, )1,

and the Rao test statistic is defined by #a &, anol 16)™" @cumine,, Where @, ins.
= 9[NED(d,, fs,)1/36. Finally, the Wald test statistic based on the PNED, is given by
7( 9(;”5,,,/1— 8,) TI&,,( /BGNED.A_ 6,).

The Hellinger deviance test was proposed by Simpson (1989). By arguments similar to
those of Basu et al. (1996) and using results of Lindsay (1994), the limiting distribution of the

deviance, Rao and Wald tests based on any general penalized disparity is xi where p is the

dimension of the parameter 6.

4. Simulation Results for Estimators

The data were generated from the (1 — &)Poi(8=2)+ ePoi(0*=15) distribution, where &
= (, 0.1. The target parameter is the mean of the Poisson(2) component, and a contaminating
distribution is defined by the second component Poisson(15) whene = 0.1. Four different
sample sizes, n = 10, 20, 50 and 100, were considered. All results were based on 5000
replications. The simulations were performed using the MICROSOFT FORTRAN POWER
STATION on WINDOWS 95.

Harris and Basu (1994) showed that the MPHDE,;, (for A=1.0) in small samples has the
best performance under both contamination and no contamination cases. In Table 1 we present
the empirical means and mean square errors (MSEs) of the MPNEDEs for A4 = 0431, 0.718,
1.0 and 1.293 (obtained by A = G(-1Dh for h = 06, 1.0, 1.4, 1.8) compared to the MPHDE:¢
(for A=1). The MPHDE ;3 (for A=0.718) represents the usual MNEDE. From Table 1, we
see that at the model {e=0 case) the empirical mean values of the MNEDE are closer to the
target value than the MPHDE:o and the MPNEDE:,, while the MSE values of the MNEDE
are comparable to those of the MPHDEio. Under the contamination case (e=0.1), the
MNEDE has the smallest MSE values among all estimators, which is most noticeable for the
sample size 10.

To examine the performance of the estimators for other parameter values, we also computed
the empirical mean and MSE of the estimators under (1 — &)Poi(8) +&Poi(8), e = 0, 0.1, for
(6,6%) = (210), (1,8), and (518). The results had a similar pattern as in the case of
(1— &)Poi(2) +ePoi(15), and they are not presented here for brevity.

As a second example of a discrete model, the geometric distribution was considered, in
which case the data were generated from (1—¢e)Geo(6=0.5)+ eGeo(8°=0.1),e = 0, 0.1.
The target parameter was the inverse of the mean of Geo(0.5), and sample sizes of 10, 20, 50,
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and 100 were used. The results are presented in Table 2. We observe that the MNEDE (.e.,
MPNEDEqn8) performs better than the MPHDEi; and the MPNEDE:o in terms of both
empirical bias and MSE at the model, while showing the smallest MSE under contamination.
Although the MPNEDEo4: has the best performance among robust estimators at the model

(e=0), it is generally outperformed by the MNEDE under contamination.

Thus, under the Poisson and the Geometric distributions settings considered here the
MPNEDE:o, does not show improvements over the MNEDE in small datasets, unlike the
MPHDE:o over the MHDE. In fact, the MNEDE performs as well as or better than the
MPHDE:¢ under both contamination and no contamination cases.

5. Simulation Results for Test Statistics

As in Section 4, all results presented in this section were based on 5000 replications with
four different sample sizes 10, 20, 30 and 100 for the deviance tests. We also computed the
Rao tests and Wald tests but did not present the numbers for brevity. For the Poisson model,

the data were generated from the mixture (1— &)Poi( 8=2)+ ePoi( 8" =15) distributions for ¢
= 0, 0.1. The empirical levels and powers were computed for H; =2 and H,;0=3
respectively for the nominal level 0.05. The empirical level and power were calculated as the

proportion of test statistic values exceeding the 2°(1) critical value. These are presented in
Tables 3 and 4.

We now discuss the results of Table 3. Under both no contamination and contamination
cases, improvements in the level values of the negative exponential deviance test (NEDT) are
provided by the penalized negative exponential deviance test for A=1.0 (PNEDTi0). At the
model, the levels of PNEDTio are the closest to the nominal level 0.05 among all non-LRT
tests for sample sizes 10 and 20, while performing well under contamination. Our
computations on the empirical levels of the Rao tests and Wald tests (not presented here)
showed the following. The levels of the Rao test based on the ordinary NED is overly
conservative and the level values of the Rao tests based on the PNEDs increase as the
penalty parameter A increases. On the other hand, the empirical levels of the Wald tests
based on the NED and PNED are higher than the nominal level, as for the HD and PHD. The
Wald test based on the ordinary NED appeared to have the best overall level performance
among all other Wald tests under contaminated and uncontaminated cases.

The empirical powers of the deviance tests based on the hypothesis H,8=3 are presented

in Table 4. At the model the power of the PNED;y test is the closest to that of the LRT.
Under contamination the likelihood ratio test incur a significant loss in power whereas the
robust tests maintain their powers better. The empirical powers of the PNEDio tests are
generally higher than the PHDio and NED tests both under contamination and no
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contamination. Note that the ordinary Hellinger deviance test has much higher empirical
powers than other tests, which is expected since it has much higher empirical level values.

We also did simulations under the mixture (1— &)Poi(8) +ePoi( 8" =8) distributions for
H;0=1 vs. H; =2, and under the mixture (1 —&)Poi(8)+ &Poi(68"=18) distributions for

H;0=5 vs. H;0=8. The results were similar to the case discussed above and we do not
present the simulation results for brevity.

We studied the performance of the tests under the geometric distribution also. We generated
data fromfrom (1 — &)Geo(8) + €Geo(8"=0(.1) distributions for H,;6=0.5 vs. H,;60=0.3.
The nominal level of 0.10 was considered in this case for sample sizes 10, 20, 50, and 100.
The results presented in Tables 5 and 6 seem to be similar to those in the distribution case.
The empirical levels of the deviance tests based on the LD, HD, PHDio, NED, and PNED,
were plotted in Figure 2 for testing and for sample sizes between 10 and 200 at intervals of
5. Note that in the graph the labels PHD and PNED represent the PHDio and PNED, - tests
respectively. The level of the deviance test based on the PNEDio is seen to be closer to the

nominal level than other (including PHDio) robust tests for small sample sizes up to about
125.
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Figure 2. Observed Levels for the Geometric Example
6. Concluding Remarks

We have studied the small sample performance of estimators and tests based on the PNED
under Poisson and geometric models. At the model, penalizing the NED did not lead to
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improvements over the ordinary NED in small samples, unlike in the case of the PHDio over
the HD. In fact, the NED appears to perform as well as or better than the PHDio. This can
be explained by the fact that the HD is very sensitive to inliers whereas the NED is robust
against them, and usually a considerable number of inliers are encountered in small datasets
under discrete models in the form of empty cells. However, in testing of hypotheses, the
deviance test based on the PNEDig appears to improve upon that based on the ordinary NED
and thus it can be used as a good robust alternative to the tests of hypothesis based on the
HD, the PHD, and the NED.
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APPENDIX

Table 1. Empirical Means and MSESs of the estimators for different disparities and sample sizes

n= 10, 20, 50 and 100 under mode! (1-€)Poisson(2)+EPoisson(15)

€=0.0
n=10 n=20 n=50 n=100
Disparity Mean MSE  Mean  MSE  Mean  MSE  M™Mean  MSE
LD 2002 0202 1999 0100 2002 "0.039 2002 0.020
HD 1.800 0280 1857 0.127 1.921 0.046 1.952 0.023
PHD, , 1.943 0216 1.962 0.105 1976  0.041 1.984  0.021
PNED 2023 0227 2031 0.113 2.018 0.043 2010 0.021
PNED,(NED) 1956 0227 1.983 0.108 1996  0.041 1.999  0.021
PNED, , 1.900 0240 1.943 0.110 1976  0.041 1.988 0.021
PNED, ,,, 1.849 0264 1906 0.117 1.958 0.042 1.978  0.021
€=0.1
LD 3274 3295 3293 2577 3295 2053 3303 1.888
HD 1.821 0.550 1864 0.148 1.938  0.053 1.979  0.026
PHD, , 1974 0389 1992 0127 2004 0050 2015 0026
PNED,,, 2.054 0287 2055 0.134 2038 0.051 2.028 0.026
PNED, (NED) 1971 0283 199 0.125 2.011 0.047 2015 0.025
NED, , 1907 0295 1950 0.127 1.987 0.048 2,003 0.026
PNED 1.850 0.319 1907 0.134 1.965  0.048 1.991 0.026

Table 2. Empirical Means and MSEs of the estimators for different disparities and sample sizes

n =10, 20, 50 and 100 under model (1-€)Geometric(0.5)+¢Geometric(0.1)

€=00
n=10 n=20 n=50 n=100

Disparity Mean MSE Mean MSE  Mean MSE  Mean  MSE
LD 0.524 0.013 03514 0.007 0.504 ~0.003 0.501 0.001
HD 0.615 0.026 0.584 0014 0.546 0005 0.528 0.002
PHD, , 0.554 0016 0.539 0.009 0520 0003 0512 0.001
PNED,;, 0.511 0.014 0.504 0.008 0498 0003 0498 0.001
PNED, (NED) 0.546 0.015 0.529 0009 0511 0003 0.505 0.001
PNED,, 0.573 0.018 0548 0.010 0521 0003 0.511 0.002
PNED, ,, 0.597 0.023  0.565 0012 0530 0004 0.516 0.002

£=0.1
LD 0417 0.028 0.393 0.024 0371 0022 0.364 0.021
HD 0.591 0.024  0.557 0.012 0.506 0.003 0478 0.002
PHD, , 0.518 0016 0.501 0.009 0474 0.004 0460 0.003
PNED ,;, 0.481 0016 0474 0.010 0461 0.005 0457 0.004
PNED, (NED) 0.521 0.015 0.503 0.009 0476 0.004 0464 0.003
PNED, , 0.551 0.017 0.526 0.010 0488 0004 0470 0.003
PNED 0.576 0.021 0.545 0.011 0499 0.004 0477 0.002

1.293

527
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Table 3. Empirical levels of deviance tests for different disparities and sample sizes

n =10, 20, 50 and 100 at nominal level 0.05 under the Poisson model

“Contaminating Model: (1-€)Poisson(2y+EPoisson(15)
Proportion Disparity n=10 n=20 n=50 n=100
LD 0.045 0.054 0.050 0.04%
HD 0.118 0.108 0.084 0.077
PHD, , 0.034 0.044 0.049 0.052
€=0.0 PNED ;, 0.017 0.028 0.036 0.043
PNED,(NED) 0.031 0.036 0.040 0.046
PNED, , 0.044 0.046 0.043 0.047
PNED, ,,, 0.065 0.056 0.049 0.051
LD 0.546 0.713 0.941 0.995
HD 0.129 0.118 0.090 0.079
PHD,, 0.042 0.046 0.056 0.061
£=0.1 PNED;, 0.018 0.026 0.039 0.048
PNED, ((NED) 0.033 0.033 0.040 0.048
PNED, , 0.051 0.046 0.042 0.049
PNED, ,;, 0.071 0.060 0.049 0.053

Table 4. Empirical powers of deviance tests for different disparities and sample sizes

=10, 20, 50 and 100 at nominal level 0.05 under the Poisson model

~Contaminating Model: (1-€)Poisson(3)+EPoisson(15)
Proportion Disparity =10 n=20 n=30 n=100
LD 0.475 0.8T0 0.993 1.000
HD 0.694 0.910 0.998 1.000
PHD,, 0.462 0.789 0.994 1.000
€=0.0 PNED,, 0.279 0.646 0.986 1.000
PNED ,,,(NED) 0.397 0.742 0.992 1.000
ED,, 0.491 0.806 0.994 1.000
PNED, ,, 0.566 0.849 0.997 1.000
LD 0.404 0.418 0.455 0512
HD 0.659 0.869 0.993 1.000
PHD,, 0.401 0.703 0.976 1.000
£=0.1 PNED;, 0.242 0.564 0.964 1.000
PNED,,(NED) 0.358 0.674 0.977 1.000
PNED, , 0.455 0.750 0.984 1.000

PNED, ,,, 0530 0.803 0.987 1.000
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Table 5. Empirical levels of deviance tests for different disparities and sample sizes

n=10, 20, 50 and 100 at nominal level 0.10 under the geometric model

Contaminating

Model: (1-€)Geometric(0.5)+€Geometric(0.1)

Proportion Disparity n=[0 n=20 n=50 n=100
LD 0.087 0.092 0.094 0.103
HD 0.233 0.263 0.241 0.217
PHD,, 0.055 0.080 0.087 0.089
€=0.0 PNED ;, 0.026 0.050 0.059 0.074
PNED, (NED) 0.058 0.066 0.071 0.079
PNED, , 0.090 0.094 0.091 0.093
PNED, ,,, 0.111 0.137 0.122 0.109
LD 0.335 0.455 0.679 0.855
HD 0.191 0.189 0.146 0.219
PHD, , 0.059 0.073 0.136 0.277
€=0.1 PNED ,;, 0.038 0.074 0.155 0.274
PNED, (NED) 0.044 0.066 0.126 0.240
PNED, 0.057 0.080 0.109 0.209
PNED, ,,, 0.105 0.102 0.095 0.175

Table 6. Empirical powers of deviance tests for different disparities and sample sizes
n=10, 20, 50 and 100 at nominal level 0.10 under the geometric model

Contaminating

Model: (1-€)Geometric(0.3t€Geometric(0.1)

Proportion Disparity n=10 n=20 n=50 n=100
1D 0676 0.906 0.999 1.000
HD 0.949 0.997 1.000 1.000
PHD,, 0.666 0.904 0.999 1.000
£=0.0 PNED ;, 0.398 0.715 0.986 1.000
PNED, (NED) 0.573 0.864 0.997 1.000
PNED, , 0.742 0.933 0.999 1.000
PNED, ,,, 0.819 0.967 0.999 1.000
LD 0.407 0.447 0.551 0.708
HD 0.865 0.965 0.996 1.000
PHD, , 0.492 0.704 0.933 0.994
£=0.1 PNED,;, 0274 0.498 0.871 0.991
PNED, (NED) 0.448 0.705 0.946 0.996
PNED, , 0.612 0.821 0.974 0.998
PNED 0.713 0.894 0.985 0.999

1.293
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