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Constrained Li-Estimation in Linear Regression!

Bu-Yong Kim?
Abstract

An algorithm is proposed for the L;-estimation with linear equality and inequality

constraints in linear regression model. The algorithm employs a linear scaling
transformation to obtain the optimal solution of linear programming type problem.
And a special scheme is used to maintain the feasibility of the updated solution at
each iteration. The convergence of the proposed algorithm is proved. In addition, the
updating and orthogonal decomposition techniques are employed to improve the
computational efficiency and numerical stability.

1. Introduction

It is well known that the Lj-estimator is robust with respect to vertical outliers, and it

has received considerable attention in the literatures of the robust regression. Statistical

properties of the L,-estimator have been studied by Blattberg and Sargent (1971), Rosenberg

and Carlson (1977), Pfaffenberger and Dinkel (1978), Bassett and Koenker (1978), and Dielman
and Pfaffenberger (1982). Bloomfield and Steiger (1983) describe the strong consistency and

some robustness properties of the L -estimator. A necessary condition for the consistency of
the L-estimator is proposed by Chen and Wu (1993). Birkes and Dodge (1993) present testing
of hypotheses, confidence intervals, selection of variables, and so on with the L ;-estimation.
Kim (1995) investigates the robustness, in terms of breakdown point, of the L-estimator. We

consider L,-estimation problem in the linear regression model with linear equality and
inequality constraints,

y=XB8 +te: GB =g, HB <h (1.1)
where y denotes an #»-vector of response variable, X a full-rank #Xp matrix of regressors,
B a p-vector of regression parameter, & an n-vector of random error. Matrix G( tXp) and

t-vector g define linear equality constraints, and matrix H( »Xp) and 7-vector % define
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linear inequality constraints.

Algorithms for constrained L;-estimation have been developed by Armstrong and Hultz

(1977), Barrodale and Roberts (1977, 1978), and Bartels and Conn (1980). Kim (1987) suggests

an unconstrained L;-estimation procedure which exhibits a dominant trend with respect to

computing effort as the size of data set increases. In this article we propose a constrained

L -estimation procedure which is an extension of Kim (1987), and prove the convergence of

the proposed algorithm.

2. Proposed Algorithm

This section starts with the linear programming problem to deal with the linear constraints

in L,-estimation,
minimize £’'e’+ £°e”
subject to X/B-%- Iet—Ie =y (2.1)
GB=g HB+Is=h, e*=0, e 20, s>0

where £ is an #n-vector of all ones, s is an #»-vector of slack variable, and e’ and e~

represent positive and negative deviations, respectively. This problem can be solved by any
simplex type algorithms. However, when the problem has a large number of observations, the
problem size becomes so large that the direct applications of those algorithms to this problem
is not computationally efficient. Thus, we apply a linear scaling transformation technique to
this problem. For this purpose, we employ the big-M method, and obtain the dual problem as

follows,
maximize Y wg)+ & wyt B wy
subject to X'w.(1)+ Gwg+Hwsz=0 (2.2)
—f=wp<~t, —~mSwy=<m —mSwy=s0
where wy =[w, -, w,], wey ={w,e1, - ward, wa) =[wuire1, -, Wayr,] are vectors

of dual variables. m is vector of all = which is a large positive number, and represents the
cost of each artificial variable. Since this problem has similar form to the bounded constraints

on w in Kim (1987), we can extend the algorithm BKIML1. Now we need an initial feasible
and strictly interior point. Of course, the two-phase method may be employed to obtain an
initial feasible point. But the difficulty is that we still must obtain an initial feasible point in
the first phase. So we have to convert this problem to a standard format of linear
programming. However, it is very cumbersome and takes a significant number of steps to
compute an initial feasible solution in the two-phase method since the problem size becomes
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large when the bounded constraints in (2.2) are explicitly included within the constraint
matrix. Furthermore, it is not guaranteed that the feasible point obtained in the first phase is
a strictly interior point which is the mandatory condition for the scaling algorithm. In this
context, we consider an alternative procedure to solve the problem.

For simplicity, we define several notations used in this article ; & =[y & k],
S=(XGHI w=[(wywegwal d=[¢ m m] f=[¢ m 0] By
defining D= diag [v; ], where

mn{l—w,14+w;} for i=1,,n
v;={min { 1-wi/m,1+wi/m} for i=n+1,-,n+t
1+ wi/m for i=n+t+1,,n+t+r

and putting w= Dz, the problem (2.2) in w-space is simply transformed to the problem
(2.3) in z-space;

maximize { (Db)' z :(DS) z=0,—d<Dz<f)}. (2.3)
This transformation does not affect the solution of the problem (2.2). By applying the scaling

~

linear transformation Db= Z, DS=3S8 at the k-th iteration, we obtain the projection of &

onto the null space of 2= 0 such as «*= { I-3(3' 3 '3} 5. Then an improved feasible

k+1

point 2 is obtained by moving along the projected gradient. Denoting 7(0<#%<1) to be a

LAREIPLES 7)uk. Let pk=Duk. then new

step length, we can update the feasible point 2* as, z
point 1s mapped back to the w-space by the transformation of z=D"'w,
wttl= W+ 2"
We can initialize the algorithm with w® =0 which is a feasible point for this problem. But

since w(}3)= 0 is boundary value, we employ a special technique to maintain the feasibility of
w* at each iteration. This can be done if we concentrate on the constraints, — m< w’fg)ﬁ 0.

When it starts at the point w'f3)= 0 and takes a step toward a new point w'fg)l, not all
directions are allowed if the new point is to be in the feasible region. For instance, if

W}Z;g),‘:o and the i(-th inequality constraint is inactive, i.e., uf>0, then the new point
BEY kol h int — m< wtil<0 si {»<1. Theref i
w3 = Wiz;+ yp; violates the constraint m< w3y <0 since 0{7»<l. erefore, moving

in the direction [ is not permitted in this case. Thus, such a variable w’fg)i must be detected

and the inequality constraint corresponding to that variable must be temporarily deleted from
the problem when the projected gradient is computed. In this respect, we first examine the

k“, and delete the most inactive constraint from the

feasibility of new potential solution w
inequality constraints that violate the feasibility, i.e., w/f3),-=0 and uf) 0, and repeat until

only the wvariables which satisfy the feasibility remain. Let A= {17},
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C= { ieMwls; =0, us>0}, then S denotes the matrix S with the i-th row elements
replaced by 0 if i=C. Similarly, —I; and 7} are the vectors b and p with the i-th element

. - - . —k
replaced by 0 if i=C, respectively. Now we compute the projected gradient and hence p

from S and b, and update w®. At the next iteration, if we have any inequality constraints
which are deleted in the previous iteration but now satisfy the feasibility, then we add the
most active one back into our problem and repeat until all the variables which satisfy the
feasibility are included. Lemma 1 shows that this technique leads to a usable feasible

k+1

direction. In addition, to maintain strictly interior feasibility of w” ', we modify the step

length as,
7=a/0* o°= max [w?, of, of],
where  p'=[pw) P Pm ], oi=max,;[max { p(/(1—wlyd, =i/ (1+win) } 1,
= max ; [ max { ply/ (m—why), — o/ (m+ why) } 1, ob= max [max { —pea;'/ whys
- 5(3),-’2/ (m+ wis) } if why=0, max {0, —5(3),~k/m} if wts,;=0]. The detail steps of

the algorithm for the constrained L,-estimation are as follows.
Algorithm : L1CON

Initialization. Set the initial feasible point w®= 0 with the iteration counter k= 0.

Step 1. Let of=min { 1—why;1+why:)} (i=1, -, n), vhy=min { 1—why/m,
1+ w'(az),-/m }o(i=1,-,0, v’fg),: 1+ w’fg,),-/m (i=1,,7), and D*= diag [v’fl),- Vi v'fg),-].
Then compute #*=[I—D*S{ S(D*?S} ~'S'D} Db.

Step 2. If any w/fg)l-=0 and u’fg),->0, then delete the most inactive inequality constraint,

repeatedly. And if any w’fg)i=0 and u/f;;),»SO among the inequality constraints which are
deleted at the previous iteration, then add the most active one back and repeat until only the

variables that satisfy the feasibility remain.
—k
Step 3. If no inequality constraint is deleted in Step 2, then replace u® for u.

Otherwise, compute —z;k= [I-DfS{ S(D%*S} ~'S'D*) D*b.

Step 4. Compute ;k= D* ;k. If | ;k | <& for termination tolerance &0, then let the
constrained L,-estimate be IB=(§'—§)—1—§'—I) and stop.

Step 5. Let wf= max; [max { ptp/(1—wty), —ptni/A+wip) } ], o5= max,[max

- k — k
{ phoyil (m—wlyy), — byl (m+ win) } 1, wi=max [max { —peay /Wiy, — b/
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(m+ why) } if why#0, max {0, *5(3),-1?/7%} if w¥y;=0], and o= max [}, wf, wil.

—k
Update the iterate, w = wk+(a//wk) P, and return to Step 1 with k = k + 1.

3. Convergence of the Algorithm

The proposed algorithm employs a linear scaling transformation approach. In this section, it
is proved that not only the approach works well, but also the algorithm converges.

Lemma 1. Each iterate w® of the proposed algorithm is feasible.

Proof. At the initialization we set @w’= 0, so the feasibility is satisfied. Assume that w"

is feasible, then since z,-k corresponding to the i-th inactive inequality constraint is equal to
zero, it follows that 4
Tt =T wt+ (d/)S D
=T w*+ (/oS (DHY b—S{ S(DH?S} 'S (D"? B]
=S w*
And for w**! to-be a strictly interior feasible point, * must satisfy the conditions,
—1<why+ phpdof<l, —m<why+ phyloi<m, —m<wh+ Dei'lwi<0.
These conditions are explicitly written as follows,
(D I P20, then @< — pi/(1+wly) or o= plnd (1—wiy),
otherwise, @f<p%,/(1—wkp) or wf=— k(L4 why).
(2) I p8220, then wi< —ploi/(m+ why) or wi=pka(m—why),
otherwise, @5<plyi/ (m— why) or s> — ply/ (m+ wiyy.
) If D20, then whs — D /(m+why) or @bz =D, lwhs,
otherwise, wi< —2(3)fk/wif3),') or wi= —Z(g)ik/(m"{" wks) when wfy),#0,
wi> —Z(g)ik/m when wfg),=0.

Consequently, we can choose w® as in Step 5 to maintain the feasibility. Thus, the feasibility
holds for each iteration.

Theorem 1. If pk=0 at any iteration, then w* is optimal. Otherwise assume that

p*+=0 for all £ Then { ¥ w’fl)+ g w’fz)+ '3 w’f;;)} converges in problem (2.2).
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Proof. If 1)”= 0, then z*=0. It implies that objective function is a constant for all
feasible solution. That is, w® is optimal. Now suppose pk#=0 for all %, and prove that
sequence { ¥y wiy+ & why+ h why} is strictly increasing. Since we can assume without

loss of generality that matrix S has full column rank, the projected gradient on the original

space is

2 = (DN b~ (DH?S ( SDH?S) ) ~S(DM%b. (3.1)
It follows from (3.1) that

{B—(DH™2 "} = B (DH?S{ S(DH?S) 3. (32)

And the following relationship can be obtained from Lemma 1 and equation (3.2),

St = wh =0

BDHS{ T(DHIS) TS (wht - wh) =0

B0k = wh = ( ) (D) MWk = wh. (3.3)
Since (D*) 7% is positive definite and ;k#:O from the assumption it follows that

(D) (DY Mw* = wh)=(alo")( ) (D) B0,

It implies that & (w*"'— w%>0. Similarly, it can be shown that & (w**1— w*)>0.
Therefore, we have & w**!> b w® at each iteration £ On the other hand, since { & w*} is

bounded from above by the weak duality, { ¥ w'fl)+ g w’fz)+ h w'fg)} converges.

Theorem 2. The proposed algorithm terminates in a finite number of iterations for any

termination tolerance &> ().

Proof. It follows from (3.3) and the definition of L,-norm that
B wtt = b wh= 2/ p)(DY P D =(ala 1 (DD D

The convergence of { 7) w*} implies that its difference sequence tends to zero, that is,

( (alo) 1 (DY D 131 0. (3.4)
It follows from Step 1 and 5 of the algorithm and the definition of Ls-norm that

0<o*= max { o}, v}, 0}
<max;{ | b | /of} if o' = b why (35)
= 1D '

. -k o . . .
However, if o®= — D3y /wlfg,),-, it implies that wlf;)}:O. At the next iteration, this
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k+1

constraint is deleted if u’fg’)})O. But if uf;)}so, then ~2)(3),- /w/f;)}éo and hence

ot # ——1—)(3),“1 / w'f;)}. Therefore, this particular case does not affect the above result. In
addition, it follows from (3.5) that
_—k Lk L —k
0<al(DH ' p lo<al DH ' I /1DHY ! p |l w
_y—k,
<(2/®) I (DH o 15 .
Thus, the necessary condition for (3.4) is

CHDY P 3 1, -0, (3.6)

—_— —k —k 1 —k
Now, since max;| pi |l =1 # 1§D ' p || (DH™' 5 I, it follows from
(3.6) that {pf}_*O, for all 7=1,---, n+ t4+ ». Hence, the algorithm terminates in a finite

number of iterations for some chosen tolerance & 0.

4. Computational Aspects

The algorithm is so computationally intractable that much effort should be made to improve
the computational efficiency and numerical stability. To improve the computational efficiency

—k
one may employ updating p at each iteration since computing effort in the algorithm is

dominated by the computation of ;k, in particular, the inverse matrix of TS'(Dk)Z-S‘. The only
quantity that changes from iteration to iteration is the diagonal elements of D* The updating
procedure can be employed to compute { S (D**)%S} 7! on the basis of { S(D%?S) L
Define U= (D**1)?—(D*? and denote by Z a set of indices corresponding to nonnull
rows in U. Let V= { S(DY*S} ', then
{ S(D*HES) T'= ( S(DHES+SUS)

= (I+V S;/Uz; Sp~ 'V

= {I=-V S,/ UzgI+ S;VS;Uzp) ' S;} V

= V=V S,/ UzxI+ S;V S/ Uz ' SzV.
When D! and D**! differ only in a few elements (this situation happens when the
solution is close to the optimum), that is, the dimension of Uy, is very small, the

updating scheme results in significant improvement in the computational efficiency.
On the other hand, the computational instability problem may well be dealt with by the

. . —k k.
orthogonal transformation approach. It turns out that the computation of # (or # ) is
equivalent to computing the residuals of the weighted least squares problem:
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0 = € M0 pFy_ D4, W =DFb—SD'e

—k
One of the methods for computing # is to implement the orthogonal decomposition,

QDk§=[ T 0']'1 QDk_bz[ cl, CZ']I
—k
where @ is orthogonal and 7 is upper triangular. Then #% can be computed as follows

©=Q0 ¢
5. Concluding Remarks

The comparison of constrained L;-algorithms in terms of computational efficiency via

simulation is not quite reasonable since the computational efficiency of constrained algorithms
depends highly on the structure of constraints. However, since the constrained algorithms are
the extensions of the unconstrained algorithms, it may be useful to consider the simulation

studies given by Kim (1987) on the computational efficiency of the unconstrained L;-

algorithms.
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