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A Graphical Method for Evaluating the Effect of Blocking
in Response Surface Designs Using Cuboidal Regions

Sang-Hyun Park!)? and Dae-Heung Jang?
Abstract

When fitting a response surface model, the least squares estimates of the model’s
parameters and the prediction variance will generally depend on how the response
surface design is blocked. That is, the choice of a blocking arrangement for a
response surface design can have a considerable effect on estimating the mean
response and on the size of the prediction variance even if the experimental runs are
the same. Therefore, care should be exercised in the ‘selection of blocks. In this paper,
we propose a graphical method for evaluating the effect of blocking in a response
surface designs using cuboidal regions in the presence of a fixed block effect. This
graphical method can be used to investigate how the blocking has influence on the
prediction variance throughout the entire experimental region of interest when this
region is cuboidal, and compare the block effect in the cases of the orthogonal and
non-orthogonal block designs, respectively. '

1. Introduction

Model fitting in response surface methodology is usually based on the assumption that the
experimental runs are carried out under homogeneous conditions. This, however, may be guite
often difficult to achieve in many experiments. To control such an extraneous source of
variation, the response surface design should be arranged in blocks within which homogeneity
of conditions can be maintained. This block effect can affect the estimation of the mean
response and its prediction variance over a certain region of interest. In particular, the least
squares estimates of the coefficients and prediction variance associated with the input
variables in the fitted model generally depend on the manner in which the design is divided
into blocks. Furthermore, the design is frequently chosen so that it blocks orthogonally. In this
special case, the least squares estimates and prediction variance are invariant to the block
effect, and hence the standard techniques of response surface methodology can be applied as if
the Dblock effect did not exist. The conditions for a response surface design to block
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orthogonally were given by Box and Hunter(1957) for a second-order model and by
Khuri(1992) for the general case of a model of order d(=1).

In many experimental situations, a response surface design may not block orthogonally. In
all such cases, the least squares fit of the assumed model and prediction variance can be
affected by the blocking arrangement even if the experimental runs are the same. Therefore, it
is imperative that the block effect be accounted for before any exploration of the response
surface is carried out. Dey and Das(1970) introduced the concept of non-orthogonal blocking
for the special case of second-order models and Adhikary and Panda(1990) presented a
sequential method for constructing second-order rotatable designs in non-orthogonal blocks.
More recently, Khuri(1994) demonstrated the effects of the blocks on estimating the mean
response, on the prediction variance and on the optimum of the response surface model in the
presence of a fixed block effect.

As a graphical technique for evaluating the prediction capability of response surface designs,
Giovannitti- Jensen and Myers(1989) proposed a variance-based graphical approach for standard
response surface designs that considers plots of the maximum, the minimum and the spherical
average of the prediction variance on spheres of varying radii inside a region of interest. In
addition to the prediction variance, Vining and Myers(1991) extended a graphical procedure for
evaluating response surface designs in terms of the mean squared error of prediction. Using
the concepts of Khuri(1994) and Giovannitti-Jensen and Myers(1989), in the presence of a
fixed block effect, Park and Jang(1997a) proposed measures for evaluating the effect of
blocking in response surface designs in terms of prediction variance. And using the ideas
proposed by Khuri(1992, 1994) and Giovannitti-Jensen and Myers(1989), Park and Jang(1997b)
proposed a measure and a graphical method for evaluating the effect of blocking in response
surface designs with random block effects. This article extended the works of Park and
Jang(1997a).

All of the discussion and illustration in the preceding papers deals with prediction variance
for spherical regions. In this case it is natural to observe values of prediction variance(apart
from random error variance) averaging over the volumes or surfaces of spheres. However, it
is not natural to deal with the volumes or surfaces of spheres when the natural region of
interest is a cube(See Myers and Montgomery(1995, p.381).). Rozum and Myers(1991) and
Myers et al.(1992) extended the work of Giovannitti-Jensen and Myers(1989) from spherical to
cuboidal regions. Both are useful tools for comparing competing designs or blocking
arrangements of a response surface design. Using the ideas proposed by Khuri(1992, 1994) and
Rozum and Myers(1991), Park and Jang(1998) proposed a measure for evaluating the effect of
blocking in response surface designs using cuboidal regions.

In this paper, using the ideas proposed by Khuri(1992, 1994), Rozum and Myers(1991) and
Giovannitti-Jensen and Myers(1989), we propose a graphical method for evaluating the effect
of blocking in response surface designs using cuboidal regions in‘ the presence of a fixed
block effect. This graphical method can be used to assess graphically the overall increase in
the prediction variance resulting from blocking, throughout the entire experimental regions of
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interest, when this region is cuboidal, and compare the block effect in the cases of the
orthogonal and non-orthogonal block designs, respectively. The drawback of the numeric
measures proposed by Park and Jang(1997a) and Park and Jang(1998) gives only single-valued
criteria for the entire experimental region, but the above-mentioned graphical method describes

what happens inside a region of interest, R and provides better comparisons among blocking

arrangements.
2. Effect of Blocking on the Prediction Variance

Let us consider a response surface model of order d(=1) in k% input variables,
X1, X9, **,Xp The mean response, 7(x), at a point x={(x,,xy,",x,) inside a region of
interest R is given by

nx)=B+ x5 B (1)
where the elements of the vector 8= (f;,8s,--,8,)" and By are unknown constant
parameters, J_c,g' is a vector of order 1Xp whose elements consist of the x; terms along with
their powers and cross-products of these powers up to a degree d. For a first order model

x5 = (xy,%9,",xp) and B=(B),Bs,*",Bx’, and for a second order model xp = (x;,xs,
---,xk,x%,xg, "',xi»xlx% o X o X peiXw) and  B= (B, Bo o Be By, By B Bios e,
Bir o Br-1a).

Let us assume that the experimental units used are not homogeneous, but that they can be

divided into & blocks, where the units within a block are somewhat homogeneous. Let #;

denote the size of the jth block( j=1,2,+:-,5) such that =n= ﬁx n; The response vector Y
=

which consists of the #» observations, can then be represented by the model

yv=81,+XB+Z3+¢ (2)
where 1, is a vector of ones of order #x1, X is an #Xp model matrix except 1,, the
elements of the vector B=(f,8,".B,) and B, are unknown constant parameters,
8=1(8,,09,"+,0,)", where &; denotes the effect of the jth block, Z is a block-diagonal

matrix of form Z=diag( 1,, 1,,", 1,), and € is the uX1 vector of random errors

which is assumed to have a zero mean and a variance-covariance matrix 0251,,, where [, is
the identity matrix of order nXxX#n. Since 1,=Z 1, model (2) can be written as

y= W4+ ¢ (3)
where W=[X:Z], 6=(8,7), and r=p8, 1,+ 8 If the block effects are constrained to
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sum to zero, that is, ﬁl d;=0, then B, can be expressed as
=

ﬁ ;= % 1,z

,2,-+,b). Then, the least-squares estimator of & is

Bo= %
where 7; is the jth element of r(j=1
given by

G=(w'w) W'y

and the variance-covariance matrix of _@ is

Var( 8)=(W'W) "', (4)
And, the predicted response of the mean response in model (1) is given by
W x)= B+ 16,3'3 (5)

1

where B,= B 1,"7. Formula (5) can be rewritten as
2(x)=xy"8 (6)
where x, =|[ ,x/g':% 1,’]. The prediction variance of 7( x) can therefore be written as

Varl 7(x)1= 25" (W W) ~! x40%. 7
Khuri(1994) demonstrated the following two results.

Result 1. Under orthogonal blocking, the prediction variance in formula (7) takes the form
Varl 9( )] = Var] 770(1)]+[le— fj%—l]oi ®)
=1 R; n

where Var ;70( x)] denotes the prediction variance when the block effects are zero, that is,
Varl 95 2)1= x,(UU) 7! x,06% (9)
where x,"=[1: x4'] and U=[ 1,:X].

Result 2. Under non-orthogonal blocking, the prediction variance in formula (7) takes the
form

Vard 7( x)]1= Varl 2y( £)1+ x4’ Q x40 (10)
where @ is the matrix of order (p+ B)X(p+b) of the form Q=(W W) "‘M[M' (W W) ~!
M) 7'M (W W) ™! where W=[X:Z], and M’ is a matrix of order (b—1)X (p+ b) of the
form M ={0:L], where 0 is a zero matrix of order (6—1)Xp and L=[ 1,11 —1s-1] is
of order (b—1)X% &.

From result 1, we can conclude that when the design blocks orthogonally, the prediction

x inside the experimental region exceeds Var 7,( x)] by a constant

variance at a point

amount that depends only on the sizes of the block. That is, since the second term on the



A Graphical Method for Evaluating the Effect of Blocking 611

right-hand side of formula (8) is nonnegative, we can find that blocking causes an increase in
the prediction variance when the design blocks orthogonally. From result 2, we can investigate
that unlike the case of orthogonal blocking, the increase in the prediction variance,

X6 @ LC&GZE, 1s not necessarily constant at all points of the experimental region, and that

because @ is positive semidefinite, x, @ x>0 for all x and Var 7( 2)]1= Vard 7, ( x)]1.

3. A Graphical Method for Evaluating the Effect of Blocking
in Response Surface Designs Using Cuboidal Regions

The choice of a blocking arrangement for a response surface design can have a considerable
effect on estimating the mean response and on the size of the prediction variance. These are
all shown to be affected by the sizes of the blocks and the allocation of experimental runs to
the blocks. In particular, in the case of a fixed block effect, it has been proved that the
prediction variance increases as a result of blocking as shown in the previous results.
Therefore, so as to investigate the overall increase in the prediction variance due to blocking,
it would be important to choose a blocking arrangement in the same experimental runs.

In order to investigate the overall increase in the prediction variance resulting from
blocking, we introduce a graphical method that quantifies the effect of blocking in response

surface designs using cuboidal regions in the presence of a fixed block effect. Since 02 is
generally unknown and beyond the control of the experimenter, it is important to note that,

with the exception of the constant o’z the prediction variance depends only on the design and

the form of the assumed model and the specific location of x.
Thus, from formula (10), we define a quantity given by

Vel D=0 | 25'Q x0dx an

which is called as the cuboidal increasing variance in the presence of a fixed block effect.

Here, the radius 7 is defined as the distance from the center of the hypercube to its face. C,

is the surface of a hypercube with a radius 7 defined by C,={x:ix;=*7, —r<x,<7,
i#7,7=1,2,k} and ¢ ‘= jc dx implies integration over the surface of the hypercube
with a radius 7 Hence, the cuboidal increasing variance means the average of x4 @ Xy over

the surface of a hypercube with a radius 7. By applying a property of a trace, V,,(#) is

written as
Vmg(r): ‘/’fc t"{ X5 Q le]dl

— tr[szzfc xo x5 Qdx (12)
= vl cQl
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where C =¢fc X4 Xg dx is the matrix of the cuboidal region moments, the region being the

hypercube defined by C,.
Rozum and Myers(1991) derived the following cuboidal region moments for the case where

C, is the surface of a hypercube with face of length 27 defined by C,={x:x;,=* 7,

—r<x;,<7i¥7,7j=1,2,,k}. Let

:erzz ,ﬁ,[ff,---ff,dxl---dxfﬂdx,-ﬂ---dm f;... ;dxl---dx,-_ldxjﬂ---dxk],

where the first multiple integral is on the hypercube with x;=—7# and the second multiple

integral is on the hypercube with x;=» . Then, a cuboidal region moment of order g on C,

is defined as following ;

O aaran = ¢f x1x5 e x i d x (13)
2‘/}£f f .')CIIXQZ xZ‘dxl"'dxj-ldxj+1"-dxk

where ¢~ f dx=E2*7*7! is the surface area of C, with a radius » and ¢, ¢y, "**,q, are

nonnegative integers such that ﬁlq,-=q_<.2d. Since C, is a symmetric region, the cuboidal
=

region moment 0,4, is 0 if at least one ¢; is odd (i=1,2,--,k). The cuboidal region

moments that are used in the development of a graphical measure for the first-order and
second-order model cases are the second and fourth order cuboidal region moments given by

_ 2, _ (B+2)F

4
o,= ¢fcyx“}a’;c= ik—;;}”— , (14)

. 4
G99 = ¢j‘cyx’2x/zd£= _ngfk— .

By applying formulas (13) and (14) to formula (12), we obtain that in the case of a

_ 1 2" 2” i k+2%2 i
V””g(r)~ J XK, S +1C T 3k = ¢
and that in the case of a second-order model,

V= & S0 %7 ”+1%M—(>; %%b 5; Cij) (15)

i=p+1 j=p+1 p+1j
(k+427' 1 f:: i, 1 f; ﬁ
+ k { 5 & © + 9 [i=§ ey =8 =< +1 )]

where ¢” is the (7,7)th element of @ (i,7=1,2,--,p+b). This quantity, V,,(7), is the

first-order model,

average of increasing amount in the prediction variance resulting from blocking over the
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surface of a hypercube with a radius 7 in the case of a fixed block effect.
Also, from formula (10), let us consider

Vmax(y)z max ‘AVEC,[ ﬁﬁ’Q K&] (16)

and

Vimin (7)) =min ,ecl 25" Q x6] (17
where C,={x:x;=x7r,—r<x;<v, i¥j,j=1,2,-,k}. Then, it is required that the
quantities, Ve (#) and Vi, (#), be maximized and minimized over locations on a hypercube.

These quantities, Vi (7), Vo (#) and Vi, (#) can be used as a graphical measure to assess

graphically the overall increase in the prediction variance resulting from blocking, throughout

the entire experimental regions of interest, when this region is cuboidal. Thus, we can plot
these quantities, Vi (#), V,ae(#) and Vi, (#7), against the radius ». We call this graph the
blocking effect graph(BEG) in the case of a fixed block effect when this region is cuboidal.

Through these graphs, we can examine more clearly the overall increase of the prediction
variances after blocking against a radius # and compare the block effects in the cases of the
orthogonal and non-orthogonal block designs, respectively. Hence, in the presence of a fixed
block effect, we can clearly see that the which blocking arrangement in the same experimental

design is most effective in terms of prediction variance when this region is cuboidal.

4. A Numerical Example

Let us consider the example used in Khuri(1994). This example is based on an experiment
described by Box and Draper (1987, p.360), concerning a small reactor study. The experiment
was performed sequentially in four blocks, each consisting of six runs. Three input variables
were considered (i.e. F: flow rate in liters per hour, C: concentration of catalyst, T:

temperature). A second order model in x; x, and x3 was fitted using the design given

Table 1. Here, x; x; and x3 denote the coded values of F, C and T, respectively. The basic

design is of the central composite form with four center points and a replicated axial portion.
This particular design is rotatable and blocks orthogonally, as can be verified by applying Box
and Hunter's(1957) conditions.

In order to illustrate the effect of blocking on prediction variance, let us consider other
blocking arrangements of the same 24 experimental runs in Table 1. These blocking
arrangements are described in Table 2 which is modified from Table 2 in Khuri(1994). All
blocking arrangements are scaled so that the design perimeter is restricted to being inside a
unit cube. For the basic design and several blocking arrangements described in Table 2,
computations are made of the maximum, the average and the minimum of the increasing

prediction variances, that is, Vi (7), Viae(7) and V(7). It should be noted that blocking
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Table 1. The basic design

Block Exp. run X X9 X3
1 1 -1 -1 1
2 1 -1 -1
3 -1 1 -1
4 1 1 1
5 0 0 0
6 0 0 0
2 7 -1 -1 -1
8 1 -1 1
9 -1 1 1
10 1 1 -1
11 0 0 0
12 0 0 0
3 13 -V2 0 0
14 V2 0 0
15 0 -V2 0
16 0 V2 0
17 0 0 -V2
18 0 0 V2
4 19 -V2 0 0
20 V2 0 0
21 0 -V2 0
22 0 V2 0
23 0 0 -V2
24 0 0 V2

arrangement 6 is orthogonal, as can be verified by applying Box and Hunter's(1957)
conditions. But the other blocking arrangements are not orthogonal. It also should be noted
that blocking arrangement 1 ~5 have the same number of blocks and the same block sizes as
in the basic design, but the allocation of experimental runs to the blocks is not the same.
Figure 1 ~6 show blocking effect graph for several blocking arrangements with a fixed effect
against a radius 7 in a cuboidal region. The BEGs show the dispersion in the increasing
prediction variances as the radius # increases. From these Figures, we can clearly see the
change of the block effects for each blocking arrangement as a radius 7 varies. From Figure
1, we can find that since the basic design blocks orthogonally and has the same block sizes,
the BEG for the basic design appears in a straight line which has the same values against a

radius 7 - all the values of Vi (#), Ve (7) and Vi, (7) are zero against a radius 7. This
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means that for this blocking arrangement, blocking causes no increase in the prediction
variance. And from this Figure 1, we can find that because blocking arrangement 6 is also
orthogonal, the BEG for this blocking arrangement 6 appears in a straight line which has the
same values against a radius 7, but all the values of Vi (7), Vie(#) and Viin(#) are not
zero against a radius 7 because of the different block sizes. Also, we can find the fact that
all the values of Vi (#), Vae(#) and V(7)) for all blocking arrangements are always

greater than or equal to 0.

Table 2. Division of the experimental runs described in Table 1
for the blocking arrangements

Blocking Block 1 Block 2 Block 3 Block 4
arrangement
1, 2,5 3, 4,7 13,14,15 19,20,21
1 6,11,12 8 9, 10 16,17,18 22,23,24
3, 4,5 9,10,11 1,2, 15 7, 8, 21
2 6,13,14 12,19,20 16,17,18 22,2324
2,3, 4 8 9 10 1,14,15 7,20,21
3 5, 6,13 11,12,19 16,17,18 22,2324
1, 2,3 7, 8, 9 6,14,15 12,20,21
4 4, 513 10,11,19 16,17,18 22,2324
3,45 7,8, 9 1, 2,15 19,20,21
5 6,13,14 10,11,12 16,17,18 22,23,24
1,2 3,4 13,14,15 19,20,21
6 56,7 8 16,17,18 22,23,24
9,10,11,12

Comparing the non-orthogonal blocking arrangements 1 ~5 which have the same number of
blocks and the same block sizes, we can see that the dispersions for each blocking
arrangements become wider gradually as a radius 7 increases and the dispersion of blocking
arrangement 3 or 4 appears to be lowest. In particular, the BEG for blocking arrangements 1
shows that the maximum of the increasing prediction variance increases dramatically beyond a

radius of about 0.63.
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Figure 1. Blocking effect graph for the basic design and blocking arrangement 6
with a fixed effect against the radius 7 in a cuboidal region
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Figure 2. Blocking effect graph for blocking arrangement 1 with a fixed
effect against the radius 7 in a cuboidal region
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Figure 3. Blocking effect graph for blocking arrangement 2 with a fixed
effect against the radius # in a cuboidal region
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Figure 4. Blocking effect graph for blocking arrangement 3 with a fixed
effect against the radius #» in a cuboidal region
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Figure 5. Blocking effect graph for blocking arrangement 4 with a fixed
effect against the radius 7 in a cuboidal region

oeeos MAXIMUM
— AVERAGE

3. 04 srensa MINIMUM

2.6

2.04

V(r)

9.9 ! Y ¥ T F—— t +
2.0 0.1 2.2 0.3 0.4 0.5 9.6 0.7 0.8 0.9 1.0

Figure 6. Blocking effect graph for blocking arrangement 5 with a fixed
effect against the radius 7 in a cuboidal region
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Figure 7 shows the cuboidal increasing variances for several blocking arrangements with a
fixed effect against the radius 7 in a cuboidal region and Figure 8 shows the cuboidal
increasing variances for several non-orthogonal blocking arrangements with a fixed effect
against the radius 7 in a cuboidal region. In Figure 7 and Figure 8, the BEGs compare only
the average of the increasing prediction variance for each blocking arrangement. From these

Figures, we can obtain the same results as those obtained from the previous BEGs. From
Figure 8, comparing the non-orthogonal blocking arrangements 1 ~5 which have the same
number of blocks and block sizes, we can see that if the radius 7 is less than approximately
0.57, blocking arrangement 3 minimizes the overall increase in the prediction variance and
blocking arrangement 4 minimizes beyond a radius of approximately 0.57. That is, we can
find the fact that if the radius 7 is less than approximately (.57, blocking arrangement 3
among the non-orthogonal blocking arrangements is most effective and blocking arrangement
4 is most effective beyond a radius of approximately (.57 in terms of the prediction variance.

In particular, from this figure, we can find that as the radius # increases, the cuboidal
increasing variance of blocking arrangement 1 appears to be highest at the center of the
design region and decreases gradually, and then the cuboidal increasing variance increases
again near the perimeter of the design region. These results are similar to those of Park and

Jang(1997a) obtained in terms of spherical regions.
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Figure 7. The cuboidal increasing variances for several blocking arrangements
with a fixed effect against the radius 7 in a cuboidal region
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Figure 8. The cuboidal increasing variances for several non-orthogonal blocking
arrangements with a fixed effect against the radius 7 in a cuboidal region

5. Conclusions

The choice of a blocking arrangement for a response surface design can have a considerable
effect on estimating the mean response and on the size of the prediction variance. Blocking
can increase the prediction variance. Therefore, care should be exercised in the selection of
blocks. Unfortunately, single-valued criteria often fail to convey the true picture of a design’s
support for the fitted model, but the proposed graphical method describes what happens inside
a region of interest, and provides better comparisons among blocking arrangements.

In this paper, a graphical method has been proposed that allows us to evaluate the effect of
blocking in response surface designs using cuboidal regions in the case of a fixed block effect.
The proposed graphical method can be used as a useful tool for evaluating the effect of
blocking in response surface designs with a fixed effect in terms of the prediction variance
when the region of interest is cuboidal. That is, through the blocking effect graph, we can
ascertain that which blocking arrangement minimizes the overall increase in the prediction
variance, and compare the effect of blocking in the cases of orthogonal and non-orthogonal
block designs, respectively, when a region of interest is cuboidal.

In addition to the prediction variance as the extension of this paper, it is also interesting to

depict the design’s performance over the region of interest on bias to model misspecification.



A Graphical Method for Evaluating the Effect of Blocking 621

References

[1] Adhikary, B. and Panda, R.(1990), "Sequential Method of Conducting Rotatable
Designs”, Sankhy4, Series B, Vol. 52, 212-218.

[2] Box, G. E. P. and Draper, N. R.(1987), Empirical Model-Building and Response Surfaces,
John Wiley & Sons, Inc., New York.

[3] Box, G. E. P. and Hunter, ]J. S.(1957), "Multi-factor Experimental Designs for Exploring
Response Surfaces”, The Annals of Mathematical Statistics, Vol. 28, 195-241.

[4] Dey, A. and Das, M. N.(1970), "On Blocking Second Order Rotatable Designs”,
Calcutta Statistical Association Bulletin, Vol. 19, 75-85.

[5] Giovannitti-Jensen, A. and Myers, R. H.(1989), "Graphical Assessment of the
Prediction Capability of Response Surface Designs”, Technometrics, Vol. 31,
159-172.

[6] Khuri, A. 1.(1992), "Response Surface Models with Random Block Effects”,
Technometrics, Vol. 34, 26-37.

{71 (1994), "Effect of Blocking on the Estimation of a Response
Surface”, Journal of Applied Statistics, Vol. 21, 305-316.
(8] (1996), "Response Surface Models with Mixed Effects”, Journal of

Quality Technology, Vol. 28, 177-186.

[9] Myers, R. H. and Montgomery, D. C.(1995), Response Surface Methodology, John Wiley &
Sons, Inc.,, New York.

[10] Myers, R. H., Vining, G. G. and Giovannitti- Jensen, A.(1992), "Variance Dispersion
Properties of Second-Order Response Surface Designs”, Journal of Quality
Technology, Vol. 24, 1-11.

{11] Park, S. H. and Jang, D. H.(1997a), "Measures for Evaluating the Effect of Blocking in
Response Surface Designs”, submitted.

[12] (1997b), "A Measure and a Graphical Method for Evaluating
the Effect of Blocking in Response Surface Designs with Random Block Effect”,
submitted.

[13] (1998), "A Measure for Evaluating the Effect of Blocking in

Response Surface Designs Using Cuboidal Regions”, submitted.

[14] Rozum, M. A. and Myers, R. H.(1991), “Variance Dispersion Graphs for Cuboidal
Regions”, paper presented at ASA Meetings, Atlanta, GA.

[15] Vining, G. G. and Mpyers, R. H.(1991), "A Graphical Approach for Evaluating
Response Surface Designs in Terms of The Mean Squared Error of
Prediction”. Technometrics. Vol. 33. 315-326.



