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Abstract

During the start-up of a process or in a job-shop environment conventional use of
control charts may lead to erroneous results due to the limited number of subgroups
used for the construction of control limits. This article considers the effect of using
estimated control limits based on a limited number of subgroups. Especially we
investigate the performance of X and R control charts when the data are
independent, and X control chart when the data are serially correlated in terms of
average run length(ARL) and standard deviation run length(SDRL) using simulation.
It is found that the ARL and SDRL get larger as the number of subgroups used for
the construction of the chart becomes smaller.

1. Introduction

Control charts have been widely used to check whether the production process has fallen
out of control. Especially, X and R control charts are used to control the process mean and
variation, Usually it is assumed that there are a large number of subgroups available before
we construct control limits. In this case, we can obtain relatively accurate probability limits.
However, a production run may be too short to have a large number of subgroups. Or we
may want to use control charts for monitoring the process as soon as possible. In fact, there
has recently been considerable interest in using SPC charting techniques in the job-shop
environment. It is shown in Hillier (1964, 1969) that the effect of using control limits based on
a small number of samples is to erroneously indicate trouble more frequently than assumed
for future samples in the process.

During the start-up of a process just brought into statistical control, parameter may not be
known. Ghosh, Reynolds and Hui (1981) and Quesenberry (1993) showed that using estimated
control limits with limited number of subgroups results in charts for which the events that
future individual points exceed the control limits are dependent. They also showed that the
result of this dependence is to increase the ARL which is the expected time to signal. In
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Quesenberry’s paper, X chart with ¢ estimated by S/c; was investigated. However, R/d, is

also widely used to estimate ¢ in the construction of X and R charts. Hence, we investigate
the performance of X and R control charts with ¢ estimated by R/d,.

The traditional assumption in quality control charts is that the sequential observations are
identically and independently distributed. But in practice, it is common to have correlation in
the data, autocorrelations and other systematic time series effects are often substantial. In
particular, serial correlation is a common feature in environmental, biological and chemical
data. Therefore, we consider the situation where the consecutive observations are correlated
according to a first order autoregressive process and investigate the performance of X control
charts when the control limits are based on a small number of observations.

2. X Control Chart

Suppose that a quality characteristic X is normally distributed with both known mean g
and known standard deviation o. Then the sample mean X, = —}1—;)(,, is normally
distributed with mean g and standard deviation ¢ /\/;L. Hence, X; for i=1,+,m is plotted
on a chart with control limits

UCL= pu+30/Vn 2-1)
LCL=pu—30/Vn (2-2)
for monitoring a process mean. If there is no point outside the control limits then the process
mean is considered to be in statistical process control. If any future sample mean falls out of
the control limits then it is an indication that the process mean is out of control and

corrective action is required. If the process parameters ¢ and o are not known then the
estimates of them such as

X = 1L 3%, (2-3)
m =

~ _ R _ 11 , _

e S Mo .3 (2-4)

are widely used to give estimated control limits of

UCL = ?+371—;7’§ (2-5)
L[CL— 7—3—\}7% (2-6)

where d, is a function of n as can be found in Montgomery (1991).
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Let B; be the event such that a future sample mean X, goes out of control limits which

are based on previous m subgroups as defined in Qusenberry (1993). Then the probability that
event B; occurs is

P(B) = P( X, > UCL or X,< LCL).
Since both X; and UCL are approximately normally distributed the difference X; — OUCL

i1s also approximately normally distributed with mean and variance of

E(X;— UCL)=—30/Vn
0_2

2
Varl X ; — @)=7[1+#(1+9%)1

where dj is also a function of n as found in Montgomery (1991). Hence,

P(B;) = 21— 0

1 ﬁ_qli 1/2
[1+ (1+ dzz )]

Table I shows the result for specific values of m and n. It shows that for small values of
m and n the false alarm probability is larger than expected when we have known parameters
or when we have a very large number of subgroups available for the construction of control
limits. Especially for a smaller number of subgroups, say m=10, the false alarm probability is

a lot larger than 0.0027 which is P(X;> UCL or X;< LCL). For example, if m=10 and n=5

the false alarm probability is 0.0067. However, as the number of subgroups or(and) the
subgroup size grows larger, the false alarm probability approaches 0.0027.

Table I. False signal probabilities for various values of m and n

( X chart with 0 estimated by R/d,)

" 2 3 4 5 6 7 8 9 10
m

5 0445 0212 .0153 0127 0113 .0104 .0098 .0094 .0090

10 0182 .0098 .0076 .0067 .0062 .0059 .0056 0055 .0054

30 .0063 0045 .0040 .0038 .0037 .0036 .0035 .0035 .0035
100 .0036 .0032 .0031 .0030 .0030 0030 .0029 .0029 .0029
500 .0029 .0028 .0028 .0028 .0028 .0027 .0027 .0027 .0027
o0 .0027 0027 .0027 .0027 .0027 .0027 .0027 .0027 .0027

As explained in Quesenberry (1993), the events B; and B; for i{#; are not independent.
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Instead, the correlation between the random variables X; — UCL and —)_(,» - UOCL is

Cor{X;— UCL, X; — UCL)

___ VarUCL)
Var{ X;— UCL)
ﬁ_ d3
(1+9a’ 1+9d% 11,
=(¥ & z = [1+m(—5— > )]
(149 2) 2

Table II gives some values of the correlation for specific values of m and n. For example,
if m=10 and n=5 the correlation is 0.1831. Table II shows that the correlation between events
B; and B, gets smaller as the number of subgroups or(and) subgroup size grows larger.

Table II. Correlation for various values of m and n

(X chart with 0 estimated by R/d,)

" 2 3 4 5 6 7 8 9 10
m

s | ss14 4101 3459 3096 2865 2705 2589 2499 2428

10 | 3807 2579 2001 1831 .1672  .1564 1487  .1428  .1382

30 | 1700 1038 0810 0695  .0627 0582 0550 0526  .0507
w00 | 0579 0336 0258 0219 0197 0182 0172 0164 0158
500 | 0121 0069 0053 0045 0040 0037 0035 0033 0032
o | 0000 0000 0000 0000 0000  .0000 0000  .0000  .0000

Since events B; and B; are not independent the distribution of run length is not a

geometric distribution. Therefore, simulation is used to find the mean and standard deviation
of the run length (ARL and SDRL). The following is the procedure used to obtain simulated
ARL(estimated standard error of the simulated ARL) and SDRL of Table 1L

1) For each entry in Table IIl, m limited subgroups of size n(=5) are generated from a N
(¢, ¢ %) distribution where we assume that x=0 and o¢=1 without loss of generality.

2) Both UCL and LCL for the X chart are computed.

3) Samples are generated from a N( g+ 80/Vn, 0?) distribution and an appropriate
statististic( x in Table III) is calculated until it falls outside of control limits. Then the

number of times to the out of control signal is one observation for the run length
distribution.
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4) Repeat 1), 2) and 3) until we obtain a sufficiently small estimated standard error of the
estimate of the ARL. In Table III the number of simulations is 10,000.

Then we can get average and standard deviation from those 10,000 simulated run lengths
which are simulated ARL and SDRL, respectively. Finally estimated standard error of the
simulated ARL can be obtained from 'simulated SDRL / sqrt(number of simulations)’.

For comparison purpose we include ARL and SDRL for infinite m with

ARL = 1/(1—8)
SDRL = VB /(1—8)

where 8 = P(LCL < X, < UCL). The first value in Table III is the estimated ARL and

the value with parenthesis is its estimated standard error. The value below the estimated
ARL is the estimated SDRL. For instance, if the control limits are based on 10 subgroups of
size 5 using formula (2-5) and (2-6) then it will take about 646.5 unit hours when there is no
shift in the process mean before the X chart signals as opposed to 370.4 unit hours which
would be obtained using formula (2-1) and (2-2) when the parameters are known or when
there is a very large number of subgroups available before the construction of control limits.
In this case the standard error of the estimated ARL is 295 and the estimated SDRL is
2953.3.

As can be seen in Table III, the ARL based on a small number of subgroups is larger than

the one based on a large number of subgroups. Therefore, one may want to shorten the

Table 1. Simulated ARL (standard error of the simulated ARL) and SDRL of the X
chart based on m subgroups of size n=5 ( X chart with 0 estimated by R/d,)

9 0.0 0.25 0.5 1.0 20 3.0
m
5 1512.1(136.9) 437.0(416.0)  1110.5(138.4) 439.9(157.9) 19.3(1.1) 3.0(0.1)
13694.1 41598.0 13838.6 15787.8 105.1 5.6
10 646.5(29.5) 528.4(16.9) 344.0(11.0) 98.4(3.2) 9.9(0.3) 2.3(0.0)
2953.3 1686.0 1101.3 320.1 25.8 25
30 418.1(7.0) 339.4(5.6) 201.2(3.3) 56.5(0.8) 7.2(0.1) 2.1(0.0)
695.5 561.4 3340 84.9 9.0 1.7
100 | 375.0(4.3) 298.4(3.5) 167.5(2.0) 6.6(0.5) 6.5(0.1) 2.0(0.0)
434.0 347.6 202.4 51.8 6.4 1.5
500 | 367.6(3.8) 280.4(2.9) 156.7(1.6) 44.1(0.5) 6.4(0.1) 2.0(0.0)
3759 287.2 161.1 453 6.0 1.4
00 370.4 281.2 155.2 439 6.3 2.0
369.9 280.6 154.7 434 58 14
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control limits when the number of subgroups is not large in order to get a desired ARL of
370.4 for instance. Trial and error may be needed in adjusting the control limits to get a
desired level of in control ARL.

3. R Control Chart

Process variability may be controlled by plotting ranges from successive samples on an R
control chart where control limits are usually determined by

UCL = (d; + 3dy)0 (3-1)
LCL = (dz - 3d3)6 . (3-2)
If the process standard deviation ¢ is not known the estimate o = R/ d, is usually used

to give estimated control limits of
UCL = D,R (3-3)
LCL = DR (3-4)
where Dy and D; are 1+ 3dy/dy and 1 — 3d;/d, respectively. False alarm probabilities

based on UCL and LCL with some values of m are shown in Hillier (1969).

Let B; be the event that the sample range R; goes out of control limits which are based
on m subgroups. Then the events B; and B; for :#; are not independent. Instead, the

correlation between the random variables R; — UCL and R; — UCL is

Corr{R,— UCL, R,— UCL)

Var(UCL)
Var(R;— UCL)

2d3 0_2
= 2 =[1+( “)'1]’1
(1+ )d302

Table IV gives some values of the correlation for specific values of m and n. Note that the
correlation gets smaller as m or(and) n increases. However, even for m equal to 30 and n
equal to 5, which is usually required for setting up control limits, the correlation is as high as
0.1298.

Since events B; and B; are not independent simulation is used to find the ARL and SDRL

of the run length distribution. The following is the procedure used to obtain simulated
ARL(estimated standard error of the simulated ARL) and SDRL of Table V.
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Table 1V. Corr (R; — UCL, R, - LCL) for various values of m and n

(R chart with 0 estimated by R/d,)

§ 2 3 4 5 6 7 8 9 10
m

5 6810 5701 5102 .4722 4454 4254 4100 .3974 3871
10 5163 3987 3424 3091 2865 2702 2579 .2480 .2400
30 2624 1810 .1479 .1298 .1181 .1098 .1038 .0990 .0952
100 0964 0622 0495 .0428 .0386 .0357 .0336 .0319 .0306
500 0209 .0131 .0103 .0089 .0080 .0073 .0069 .0066 .0063

00 0 0 0 0 0 0 0 0 0

1) For each entry in Table V, m limited subgroups of size n(=5) are generated from a N( u,
6 ?) distribution where we assume that #=0 and o0=1 without loss of generality.

2) Both UCL and LCL for the R chart are computed.

3) Samples are generated from a N( x, o %) distribution, where ¢,/0 is taken to be 1, 1.1,

1.25, 2, 5 as in Table V, and the statistic R is calculated until it falls outside of control
limits. Then the number of times to the out of control signal is one observation for the
run length distribution.

Table V. Simulated ARL (standard error of the simulated ARL) and SDRL of R chart based
on m subgroups of size n=5

ala| |, 1.10 1.25 15 2.0 5.0
m

s 3817.5(1092.4) 1271.8(348.7)  65.8(5.9) 13.7(.9) 2.8(.1) 1.0(.0)
345453 11025.3 186.2 29.7 2.7 2

10 820.0(151.3) 216.8(27.0) 37.2(2.2) 8.7(.4) 2.7C1) 1.0(.0)
4785.1 854.7 68.4 111 2.7 2

30 306.4(19.2) 97.7(4.2) 29.7(1.3) 7.6(.2) 2.4(.1) 1.1(.0)
608.0 132.5 41.3 7.8 1.9 2

100 245.5(8.9) 80.3(3.0) 23.5(.8) 7.5(.2) 2.6(.1) 1.0(.0)
279.9 93.6 23.8 7.1 2.1 2

500 230.4(7.4) 76.0(2.5) 24.5(.7) 7.4(.2) 2.3(1) 1.0(.0)
234.8 79.4 237 6.7 1.7 2
* 204.8 72.5 23.2 7.2 24 1.0
204.3 72.0 227 6.7 1.9 0.2
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4) Repeat 1), 2) and 3) until we obtain a relatively small estimated standard error of the
estimate of the ARL. In Table V, the number of simulations is 1,000.

Then we can obtain simulated ARL(estimated standard error of the simulated ARL) and
SDRL as described in Section 2.

For comparison purpose the ARL for infinite m was calculated using Pearson (1942). Note
that the ARL based on a small number of subgroups using control limits of formula (3-3) and
(3-4) is a lot larger than the ARL that would be obtained using formula (3-1) and (3-2) if
the parameters are known or if there is a very large number of samples available for the
construction of the chart. For example the estimated ARL when m is only 30 and when there
is 256% increase in ¢ is 29.7 with its estimated standard error of 1.3. The value 41.3 is the
simulated SDRL. On the other hand the ARL and SDRL based on known parameters or on an
infinite number of subgroups are 23.2 and 22.7, respectively.

As in Table III, the ARL based on a small number of subgroups is larger than the one
based on a large number of subgroups. Hence, one may want to shorten the control limits
when the number of subgroups available is not large in order to get a desired level of ARL.
However, it will take some time before we can get adjusted control limits using simulation.

4. Sequentially Dependent Data

Shewhart control charts have been used extensively for process control with the assumption
that the sequential observations are independent. However, in practice, serial correlation is
frequently not negligible. Therefore, it is important to know how the serial correlation affects
the performance of control chart. The most popular method to incorporate the dependence in
the data is to use a time series model. In this paper, we will consider the simple case of the
first order autoregressive process.

Assume that the observation at time t is X () =X(H+ o, where X(H= ¢X(t—1)+ a(t).

Note that the shift 6o, is expressed in units of the process standard deviation o, The a(?)

may be regarded as a series of random shocks with E(a(H)=0 and Var(a($) = ¢*,. The

parameter ® must satisfy the condition that -1 < ® < 1 for the process to be stationary. Note
that we are dealing with a stationary process. The autocorrelation function of the AR(1)
process is p(t)=0p(t-1). Thus, p(k)= ¢* k=0. The correlation between consecutive observations
X(t-1) and X(t) is ®. However, if the time between the observations is k time units apart,

then the correlation between them comes down to ¢* The variance of the process is o> =
¢%,/(1—¢% which is a function of the parameter ¢. Therefore, the process variance increases

as the correlation ¢ increases in absolute value.
We will only investigate the performance, especially the average run length, of the X
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control chart when the correlation between the consecutive means can be modeled as the first
order autoregressive process. In this case, the X{(t) in the above model can be interpreted as
the mean of a subgroup of size n. Note that the consecutive observations are not independent.
Also, the events B; and B; defined in sections 2 and 3 are not independent either. Therefore,
the distribution of the run length is not a geometric distribution. Hence, simulation is used to
find the mean of the run length along with its estimated standard error. The following is the
procedure used to obtain simulated ARL(estimated standard error of the simulated ARL) and
SDRL of Table V1.

1) For each entry in Table VI, a value for X(#) is generated from a MO0, Var{X())
distribution, where we assume that Var(X(#))= ¢*,/(1—¢? in order to get rid of the
dependence on t. From then on observations for a(t+1), a(t+2), - ,a(t+m) are
generated from a N(0, ¢%) distribution where we assume that ¢2=1 and the values for
X(t+1), X(t+2), -+, X(t+m) are calculated.

2) Both UCL and LCL are computed using moving ranges.

3) Observations for a(t+m+1), a(t+m+2),--- are generated and the values for
X' (t+m+1), X (t+m+2), - are calculated and compared with OUCL and LCL until
the chart signals. This provides one observation for the run length distribution.

4) Repeat 1), 2) and 3) until we obtain a relatively small estimated standard error of the
estimate of the ARL. In Table VI, the number of simulations is 10,000.

Then we can obtain simulated ARIL(estimated standard error of the simulated ARL) and
SDRL as in Table VI. Tables VI gives the results for the estimated ARL and SDRL for each
of ¢=0.0, 0.2, 0.5, 0.8. Each of the values for ¢=0.0, 0.2, 0.5, 0.8 shows that the ARIL tends to
increase as the number of subgroups available for the construction of the charts decreases.
This reflects the impact of the number of subgroups available for the construction of the
chart limits. However, as seen in values for ¢=0.8, for very highly correlated data the number
of subgroups available for the construction of the chart limits does not seem to affect the
performance of the chart.

Table VI essentially gives the same values of ARIL. and SDRL as in the Table 4 of
Quesenberry (1993). The ARL based on the small number of subgroups tends to become
large. For instance, the simulated ARL based on m=50 subgroups when there is no shift in
the process mean is 1162.1 while the simulated ARL based on m=150 is 499.8.

The results in Table VI show that the ARL gets smaller as the correlation between
consecutive observations becomes larger. For instance, the simulated ARLs based on m=2,000

observations when there is no shift in the process mean are 377.0, 139.6, 34.0, 10.1 for ¢=0,
0.2, 05, 0.8, respectively. This phenomena reflects the fact that the estimate Ml—é/a’z of the
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Table VI. Simulated ARL (standard error of the simulated ARL) and SDRL of the X
chart (X chart with 0 estimated by MR/d,)

d 0.0 0.25 0.5 1.0 2.0 3.0
m
(2=0)
30 6272.3(2243.0) 4265.1(1715.5) 1740.4(567.1) 223.7(30.7)  11.1(0.3)  2.6(0.0)
2242973 171554.7 56710.1 3069.8 25.9 4.1
50 1162.191.0)  782.3((31.6)  460.3(49.7)  90.5(5.2) 8.5(0.1) 2.3(0.0)
9096.1 3162.4 4970.7 518.1 13.0 2.2
150 499.8(11.0) 370.6(6.5) 200.3(3.2) 53.8(0.8) 6.9(0.1) 2.1(0.0)
1097.2 645.7 322.9 80.4 7.6 1.6
500 404.9(4.7) 305.9(3.6) 168.0(1.9) 46.3(0.5) 6.5(0.1) 2.0(0.0)
4722 360.5 189.8 50.0 6.2 15
2000 377.0(3.9) 285.9(2.9) 157.6(1.6) 44.0(0.4) 6.3(0.1) 2.0(0.0)
391.6 293.5 163.6 44.1 5.8 1.4
(2=0.2)
30 473.3(76.6) 327.8(26.3) 193.0(13.2)  49.7(2.9) 6.2(0.1) 1.9(0.0)
7662.6 2630.7 1318.1 294.7 10.6 2.0
50 233.6(7.8) 180.6(4.2) 118.6(5.0) 33.9(.7) 5.4(.1) 1.8(.0)
781.8 4242 504.0 67.5 6.9 1.5
150 162.4(2.4) 132.8(1.8) 78.7(1.1) 25.6(.3) 4.7(.0) 1.7(.0)
236.7 183.6 109.2 30.0 4.7 1.2
500 145.3(1.6) 115.5(1.3) 68.7(.7) 23.6(.2) 4.5(.0) 1.7(.0)
161.0 128.4 73.5 24.8 42 12
2000 139.6(1.4) 113.1(1.2) 67.3(.7) 23.1(2) 4.5(.0) 1.7(.0)
1433 115.6 68.6 22.9 4.1 12
(2=0.5)
30 40.6(.8) 37.3(.7) 29.7(.5) 14.5(.3) 3.5(.0) 1.4(.0)
789 66.7 49.6 26.2 4.5 1.2
50 37.5(.5) 33.9(.5) 26.5(.4) 12.5(.2) 3.2(.0) 1.4(.0)
53.8 472 37.9 16.7 3.7 1.0
150 35.7(.4) 31.2(.3) 23.7(.3) 11.2(.1) 3.1(.0) 1.4(.0)
38.7 34.2 25.8 12.4 32 9
500 34.2(.4) 30.6(.3) 22.7(.2) 10.7¢.1) 2.9 1.3(.0)
35.2 31.9 23.1 10.9 2.9 9
2000 34.0(.3) 30.8(.3) 22.3(.2) 10.4(.1) 2.9(.0) 1.3(.0)
33.9 31.2 22.0 10.3 2.8 9
(2=0.8)
30 9.9(.1) 9.5(.1) 8.6(.1) 6.2(.1) 2.2(.0) 1.1¢.0)
116 114 11.0 8.6 32 8
50 9.6(.1) 9.5(.1) 8.5(.1) 5.8(.1) 2.1(.0) 1.1(.0)
10.9 10.6 9.8 7.6 2.9 6
150 10.1(.1) 9.5(.1) 8.4(.1) 5.5(.1) 2.0(.0) 1.1¢.0)
108 102 9.4 6.8 2.5 6
500 10.0(.1) 9.7(.1) 8.6(.1) 5.6(.1) 1.9(.0) 1.1¢0)
10.6 102 9.3 6.9 2.3 6
2000 10.1(.1) 9.7(.1) 8.5(.1) 5.5(.1) 1.9(.0) 1.1¢0)
105 10.5 9.6 6.6 2.4 6
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process standard deviation o, when there is correlation in the data underestimates the process
standard deviation o,. In fact, it is known that E(MR/dy) =V 1— ¢’0,.

For practical use of the results in Table VI we have to know (or estimate) ¢ for the
sequential observations, and based on the number of subgroups available we can have an idea
of the size of the ARL for in control condition. Next, if the size of the in control ARL is too
small then we can entend the control limits a little bit so that we can obtain a desirable level
of the in control ARL. However, it will take some time before we can find the right level of
the control limts since we are now using simulation methods.

Table VII. ARL of X chart with control limits of g+ 30,

0 0.0 0.25 0.5 1.0 20 30

¢
0 370.4 281.2 1552 439 6.3 20
0.2 3727 284.1 158.3 458 6.9 22
0.5 396.3 307.0 176.3 544 8.9 2.6
0.8 555.2 444.6 271.1 924 16.3 4.0

So far it is assumed that we have a limited number of observations and use MR/d, which
is a biased estimate of the process standard deviation o, However, we may be able to use
an unbiased estimate of o, such as the sample standard deviation. In this case as the number
of observations increases the sample standard deviation tends to o,. Therefore, with infinite
number of observations and with an unbiased estimate of ¢,, we can construct the control
limits of UCL= x¢+30, and LCL= z—30, In this case a Markov chain representation can be
used to obtain the ARL of the chart. Table VII, which can be found in Baik (1991), gives the
ARLs for each value of ¢=0, 0.2, 0.5, 0.8. Note that the ARLs for ¢=0, 0.2, 0.5, 0.8 when
there is no shift in the process mean are 3704, 372.7, 3835, 419.4 which is increasing as ¢
increases. This is what we would expect if we have positively correlated data and if an
unbiased estimate of ¢, is used for the construction of the chart limits. However, this does

not happen when we estimate the parameter o, with a biased estimate MR/d, as seen in the

last rows of the values for ¢=0, 0.2, 0.5, 0.8.

5. Conclusions

We have considered some aspects of X, R and X control charts. In particular, we have

looked at the ARLs of each chart assuming that the process parameters are not known and
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that a limited number of subgroups are used to construct the control limits. We have found
the following.

The performance of the X chart with process standard deviation ¢ estimated by R/d, is
very similar to that with ¢ estimated by S/c¢; in Quesenberry (1993). However, we present
the ARLs in Table III in terms of the shift in units of the standard deviation of X. In Table
I it is found that the ARL and SDRL get larger as the number of subgroups used for the
construction of the chart becomes smaller.

The performance of R chart with estimated control limits based on a small number of
subgroups is very much different from what is expected with a large number of subgroups or
with known process parameters. Specifically, the ARL and SDRL get larger as the number of
subgroups used for the construction of the chart becomes smaller.

The performance of X chart with estimated parameters is different from that with known
parameters. Especially if the number of observations for the construction of the chart is small
the ARL tends to increase. However, when there is correlation in the data the ARL gets
smaller as the correlation between consecutive observations becomes larger due to the
underestimation of the process standard deviation with moving ranges. On the other hand, if
an unbiased estimate such as sample standard deviation is used then the ARL gets larger as
the correlation between consecutive observations increases.

So far we have found that during the start-up of a process or in a job-shop environment
the use of control charts may lead to erroneous results. Hence, there has to be some
adjustment in the determination of control limits. In addition, there may have to be some other
alternatives to the application of control charts (see @ charts (1995), Seppala, et al. (1995),
Castillo and Montgomery (1995) to name a few).
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