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A Nonparametric Test for Clinical Trial with Low Infection
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Abstract

This paper evaluates a new clinical trial designs for low infection rate disease. This
type of sparse disease reaction makes the traditional two sample t-test or Wilcoxon
rank-sum test inefficient compared to a new test suggested. The new test, which is
based solely on the larger changes, is shown to be more effective than existing
method by simulation for small samples. However, this test can be shown to be
connected to the locally most powerful rank test under certain practical conditions.
This design is motivated in testing the treatment effects in periodontal disease
research.

1. Introduction

A typical simple clinical trial experiment is to divide the patients into two groups; one with
treatment, and the other serving as controls without treatment or with placebo. The decision
of the treatment effect will then be evaluated by some relevant measures pertaining to the
disease. In this paper, we consider the situation when the natural infection rate is low and the
uninfected individuals will not be affected by the treatment but they can not be identified
before treatment. This model is motivated in designing clinical trials for evaluating preventive
treatment in periodontal disease. Periodontal disease is a very common disease everywhere in
the world. It starts with inflammation at tooth gum tissues, eventually leads to the loss of
attachment to the alveolar bone and tooth loss. According to a 1987 NIH report, 95% of the
population over age 65 in US are affected by the disease. However, it is a very slow disease.
It has been discovered in many demographic study that this disease can be considered as
active only in a small proportion of the population at any given time period of 1 to 2 years
(see e.g., Lindhe et al. (1989), Papapanou, et al. (1989), and Ismail et al. (1990)). Moreover, the

AR}

activity of the disease cannot be easily observed. The current '‘gold standard” in diagnosing
the disease is to measure the change of the attachment level by probing. If there is a drastic

increase in the average attachment loss compared to the measurement error, then we can

1) Professor, Department of Statistics, University of Florida, Gainesville, Florida 32611, USA.
2) Assistant Professor, Department of Statistics, Sungkyunkwan University, Seoul, 110-745, Korea.

- 707 -



708 Mark C. K. Yang and Donguk Kim

conclude that the disease is or has been active with this person. However, there is still no
established method to predict this change by a patient’s current condition. Thus we know a
patient’s activity status only after the fact.

In general, let the measurement pertaining to the disease be continuous, and

Y, Y, ..., Y, and Yy, Yy, ...Y;, denote, respectively, the measurements of
subjects in the control group and those of #, subjects in the treatment group. Let G,(x)

denote the distribution functions for {Y;} ;- for i = 1, 2. Then, we are testing
Hy: Gi(x) = Gy(x) versus H;: Gi(x) #+ Gy(x), (1.1

or versus some more specific alternative hypotheses H,.

To test (1.1), we may use the traditional t-test, hoping it is robust against the possible
non—normality of the G;(x) under H,. Or, we may choose a nonparametric test such as the
Wilcoxon rank-sum test to make sure that the probability of making Type I error is protected
regardless of the distribution of G,(x). In the low infection rate model, is the robustness for

the t-test hold? And how efficient is the Wilcoxon rank-sum test? These are among many
other questions we try to answer.

In the low infection rate model, we let under H,,
Gi(x) = Gyx) = (1-mFy(x) + 7F(x), (1.2)

where 7 is the infection rate, Fy(x) and F,(x) are respectively the distribution functions of
an individual who is not inflected and who is inflected without treatment. When the treatment
is effective, we assume that the affected patient has a different distribution Fy(x), but the
unaffected patients remain to have the same distribution Fy(x), i.e, under H;, G,(x) is the

same as (1.2), but

Go(x) = (1—mFyx) + nFy(x). (1.3)

In most situations F,(x) represents a shift in mean in Fy(x), and Fy(x) is expected to
shift the mean of F;(x) back to Fy(x). Suppose, without loss of generality, that F(x)

increases the mean. Then it is intuitive that only some of the larger values in both groups
should be used for testing, because they are likely to come from the infected persons. The
rest of the data are merely noise in evaluating the treatment effect. If the infected individuals
can be identified, then to use only their data would be ideal. However, in many situations
there is no clear threshold to separate an infected and an uninfected individual. Moreover,
some of the infected individual may look uninfected due to the treatment. We assume that the
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infection rate has been known with a great accuracy before we design the clinical trial. Let
the estimated infection rate be x*. Then a reasonable choice of the individuals to be included

would be the upper 1007" %. More specifically, let
N= m+ny, m; = [#°n;+05], i = 1,2; M = m +my,

where [x] denote the integer part of x. Define R; to be the rank of Y; in the pooled data
{Y{j}§ ) =1, 27 = 1,...,1’1,‘ , and

x — (N—M, ifx>N-—-M
a(x)={
0, elsewhere,
S; = ];Q(Rij), (1.4)

and Hj is rejected if S; is too large, or equivalently, S, is too small. We will refer this test
as the quantile rank test, following a similar rank test, the quartile test (see Hajek and
Sidak(1967), p. 96), though it is used for a completely different purpose. If 7" =1 and F,;(x)
and F,(x) have the same distribution except location parameter, then our test coincides with
the Wilcoxon rank-sum test.

Two other nonparametric tests seem also reasonable for testing Hg. Boos and

Brownie(1986) considered the following model for the existence of non-respondents;
Hy : Gi(x)= Gy(x)=Fy(x), versus H, : Gy(x)=(1—mFy(x)+aFy(x—21). (1.5)

Apparently, the model assumes that only 1007 % individuals on the average will respond to
the treatment. Johnson, Verril and Moore(1987) generalize (1.5) to two different F's by letting,

Hl . Gz(X) = (l_ﬂ)FQ(fX:) + 71'F1(.7C). (1.6)
Under the mixed normal alternative,
Hy: Gi(x)=®(x), versus H, : Gy(x)=(1—m®@(x) + 7P (x— 1), (1.7)

the test statistic by Johnson et al. based on the approximate scores is

zg[e ""‘z/zg e M) _ 1], 0<uK1,

7i

EETESL and 7,<7,<--<7, are the ranks of Yy, Yy,... Yy, in the

where wu;=
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combined sample, and ®( - ) is the standard normal cumulative distribution function.

It is easy to show that (1.5) and (1.6) are not equivalent to the quantile rank test (1.4). Since
they are also nonparametric tests, they are valid to test the null hypothesis. We will include
the Johnson et al.’s test in the comparison.

2. Properties of the quantile rank test

Theorem 2.1 Under H;, the mean and variance of the quantile rank test statistic are

ES) = ﬂ%@- and,
S) = %[ZMZM-H)—BM(MJrD]. @2.1)

Proof. See Appendix A. 1.

Note that if n°=1, the mean and variance of S; coincide with those of the Wilcoxon
rank-sum test, respectively. Moreover, the asymptotic normality holds under very mild
condition on G;(x).

To show the optimality of this test, the distribution of the F's have to be specified. If we
assume the F’s are normally distributed with the same variance, then we will show that (1.4)
is connected to the locally most powerful rank test for this model. The normality assumption
for the data is quite reasonable for the attachment measurements (see e.g. Gunsolley and Best
(1988), Yang et al. (1992), and Namgung and Yang(1994)). The asymptotic power is useful in
determining the sample size for clinical trials. We obtain approximate score version of a
locally most powerful rank test and a quantile rank test.

Theorem 2.2 Let Yy,..., Y}, are random sample from

G =0-n®(y)+ 20 (y— A), (2.2)
and Yy,..., Y5, are random sample from

Go(y) =(1-m@(MN+ad(y— A7) (2.3)

=(1-moe(+re(y—(a—-0).
The support of Gg(y) is contained within the support of G,(¥), and G;(¥) and G4(¥)
have densities f,(¥) and f¢(3y), where
H(9) =1~ m¢(y) + np(y— 1),
f6»)=1-m)¢(y)+ np(y— (2 —0)),
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where ¢(3y) is the standard normal density function.
Then, the locally most powerful rank test for testing Hy: 6 = 0 versus H;: 8> 0

rejects H, for large values of

7 _ (r) _
2\E [ (V" —2) , (2.4)

1 iy 2
— =2~V 7+ A7)
1+(ln7r)exp 2

n + ny)

where V<<V is an ordered sample from G,(y) and 7, <7;<---<7,, are ranks of

Yy, ..., Yy, in the combined sample.

Proof. See Appendix A. 2.

Now we approximate the locally most powerful rank test by replacing the expectation by
the score
-1 Yi
— —_————— —_ A
Y ): (Gl ( n1+7’l2+1) )

nl + 7Z2 + 1 . %[_2/\01 l(,___y'_. .,1_)_’_ ,»._‘.’]
[1+(1 Z )exp m

X

T

Then the approximate locally most powerful rank test statistic is

& 7 -
Z;]( n +ny+1 ): (25)

Also if we replace v by S(v,),
vi o if vy =2 N-M

S( 7’1') =
0 , otherwise.
Then we get
o
IZ‘%‘I [7,2N—M]
_ 1— 7. wl-26n+tnd
since (T)e — (0, for y;, > N—M.,

Hence we reject H; for small values of

Z‘ril [y >N =Ml» (2.6)

an equivalent version of (1.4).
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3. Comparison with other tests

Besides the t, Wilcoxon rank-sum, and Johnson et al.’s tests, another intuitive test should
be considered. This last test is to use a threshold to classify a patient as infected or as
uninfected and using the proportions of the infected individuals to test the treatment effect.
The threshold may be known from pathological viewpoint or have to be artificially determined.
In the comparison, we will make the threshold arbitrary and choose the threshold with the
highest power. The details are given in Appendix A. 3.

For comparison, we compute the asymptotic power for the Wilcoxon rank-sum test for the
alternative we are interested in. We obtain the asymptotic mean and variance for the
Wilcoxon rank-sum test statistic W for our model.

Theorem 3.1 Let Yy, -, Y}, be a random sample from G)(y) given by (2.2) and

Y2, -+, Y3, be an independent random sample from G5(y) given by (2.3). Let n, = n,= n.

Then the asymptotic mean and variance for the Wilcoxon rank-sum test for our model are

E(m=%n(<1+2pl)n+1), and

VAW =n*(p,— o3+ (n— D (ot 23— 20D)), 3.1
where p,, p; and p3 can be defined as

= 05— +a(l-mle (2 N2+ d(— 2 /V)1+220 (2" — 2)/V2),

Py = (1-m°40,00+20 - m*xf(0, — 2)+ (1 —mrL(— 2", — A7)
+2(1—-0%Ua, ) +222(0—n o, 0 =AY+ 38 —n", 6 — 1),

ps = (1—%¢0,0)+2(1—0*2L0, 2)+ (1 =2 LA, &)
+a(l-m2(—o',—a) 21— —2",p =)+ %8s — 0", 6= 21"),

—xy/2

E(xy,x9) = f_m O(—F==— \/:—375 )\/— et

Proof. See Appendix A. 4.

Note that under H, we get p,—% and py= 173*%, and the asymptotic mean and

variance for the Wilcoxon rank-sum test under the alternative coincide with the mean and

variance under the null.
At # = 0.1, & =4, A" = 1 and using Mathematica(1991), we get p;=0.473802,
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p»=0.320562, $3=0.295. Hence the asymptotic mean and variance of the Wilcoxon

rank-sum test under the alternative (2.3) are

EX m=o.973802n2+g, and

VIW) = 0.2493142% 4 0.1665847#°(n—1). (3.2)

For example, at the significance level 0.05, the asymptotic power for the Wilcoxon rank-sum
test at 7=0.1, A =4, A'=1 are obtained to be 0.116 at n=n;=n,=50, and 0.157 at

n=100. Also, at 7#=0.1, 4 =2, A’=1, those asymptotic powers are 0.088 at #=750, and
0.110 at »=100.
There is always the question of the convergence rate for an asymptotic result. Small sample

property and its comparison with other tests were performed with ;= n, =50, 100, 150, 200,
300, 400 with Fo(x) ~N(0,1), Fi(x)~N(2,1) and Fo(x)~N(2’,1), with A =1 and &=4
and 2. It can be seen that this simulation should have covered a reasonable range of the
sample size and the difference between the three F’'s. Other sample size are either too small
or can be covered by the asymptotic approximation, and for any greater differences between
A and &7, the results tend to the extremes with very high or low powers.

Tables 1 and 2 give typical simulation results of empirical power. Each of the tabulated
values is based on 6,000 simulations at the level of significance 0.05. Table 1 shows empirical
powers at A =4 and & =1 under the alternative, and Table 2 gives those powers at
A =32 and A"=1 under the alternative. For each Table, the estimated infection rate " is
0.1, 0.15, and 0.2, but the actual infection rate ran from 0.10(0.05)0.25 to cover a large range
of possible mis-specification infection rate.

From the simulation, our quantile rank test at 7=0.1, A=4, A’=1 has the power of

0612 at n=mn,=mn,=>50, and 0862 at »n=100. But, the power for the Wilcoxon rank-sum

test is 0.117 at #=>50, and 0.156 at »= 100, which are very close to the asymptotic power
from Appendix A. 4. Also, for comparison, at 7=0.1, 4 =2, A =1, the power of the
quantile rank test is 0.260 at =50, and 0346 at =100, but that of the Wilcoxon
rank-sum test is 0.088 at #=050, and 0.110 at #= 100 from simulation. The new test has
some advantage over Johnson's et al.’s test for small sample size %, but the power difference
diminishes as # becomes large. Also, when 7 is overly estimated, i.e., 7" =0.2, Johnson's
et al.’s test does better. The overall performance of their test is acceptable compared to the
new test, but the new test is much easier to do. We note that the performance of t-test is

better than Wilcoxon test in the simulations, and t-test reach the significance level 0.05 with
negligible error margins under the null and is robust in the low infection rate model.

Figure 1 gives power curves for the 4 methods with 7n=0.1, A =4, A'=1 in the
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alternative, and Figure 2 gives those power curves with 7 = 0.1, & = 2, A" = 1,

4. Example

The Periodontal Disease Research Center (PDRC) and the Fear and Anxiety Clinic (FAC) at
the University of Florida was to conduct a clinical trial on the anxiety treatment effect on the
peridontal disease. It is well known that disease can be caused by psychological factors (see
O'Leary(1990)). Thus, it is not surprising that periodontal disease and other dental disease are
found to be related to emotional stress (see e.g., De Marco(1976)). Patients with anxiety
disorders will be selected from FAC and examined periodically at the PDRC. One group will
be treated by cognitive behavior therapy for 12 months and the other group will served as
control. We are interested in the treatment in reduction of attachment loss due to periodontal
disease. Due to uncertainty of the distribution of attachment loss in the anxiety disorders
group, we feel a nonparametric test is more appropriate. We are interested in the power of
this test under various possible treatment effects. Due to low power of the Wilcoxon
rank-sum test, we will use the quantile rank test with upper 20% of the data, because the
infected rate is expected within the range of 109 to 20%96. The final sample size is expected
around 100 in both groups.

In a future study of treating periodontal disease patients with Augmentin or clindamycin,
the new method analysis should also increase in detecting the treatment effect.

5. Conclusion

The results in the previous sections confirm one intuitive testing strategy in clinical trials:
When the infection rate is low and the infected individuals can not be identified in the
beginning of the trial, we should use only the extreme values at the end of the trial to form
test statistic. A test, (1.4), based on this idea is constructed and shown to be more effective
than the common used t or Wilcoxon rank test. It i1s simpler than and at least as powerful as
other nonparametric tests designed for similar purposes. Though the new test depends on the
prior knowledge of the infection rate, it is quite robust if this rate is misspecified.
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Table 1: Empirical powers at A =4 and A =1 under the alternative. The value x is the

true infection rate and 7" is its estimate used to form the quantile rank test (1.4).

Quantile Rank
T Ny = Hy F Wilcoxon | Johnson
7 =011x =015 7" =02
50 0.287 0.117 0.413 0.612 0.456 0.384
100 0.473 0.156 0.675 0.862 0.736 0.589
0.10 150 0.625 0.189 0.823 0.942 0.843 O.7§O
' 200 0.743 0.235 0.921 0.984 0.928 0.851
300 0.873 0.305 0.992 0.997 0.985 0.951
400 0.938 0.359 0.999 1.000 0.998 0972
50 0.460 0.181 0.621 0.856 0.723 0.638
100 0.724 0.260 0.898 0.989 0.955 0.884
015 150 0.860 0.346 0.968 0.998 0.985 0.959
' 200 0.939 0.409 0.996 1.000 0.999 0.993
300 0.992 0.530 1.000 1.000 1.000 1.000
400 0.999 0.626 1.000 1.000 1.000 1.000
50 0.632 0.261 0.807 0.967 0.903 0.851
100 0.881 0.406 0.977 0.999 0.997 0.980
0.20 150 0.965 0.531 0.998 1.000 1.000 0.999
' 200 0.994 0.636 1.000 1.000 1.000 1.000
300 1.000 0.780 1.000 1.000 1.000 1.000
400 1.000 0.870 1.000 1.000 1.000 1.000
50 0.768 0.371 0917 0.99 0981 0.956
100 0.958 0.577 0.997 1.000 1.000 0.998
095 150 0.994 0.730 1.000 1.000 1.000 1.000
' 200 0.999 0.835 1.000 1.000 1.000 1.000
300 1.000 0.936 1.000 1.000 1.000 1.000
400 1.000 0.974 1.000 1.000 1.000 1.000
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Table 2! Empirical powers at A =2 and A’ =1 under the alternative. The value 7z is the
true infection rate and 7’ is its estimate used to form the quantile rank test (1.4).

Quantile Rank
T ny=n, F Wilcoxon | Johnson .
7 =01|x7" =015 =* = 02
50 0.117 0.088 0.189 0.260 0.209 0.187
100 0.156 0.110 0.284 0.346 0.294 0.251
150 0.150 0.124 0.351 0.421 0.364 0.343
0.10 200 0.233 0.149 0.440 0.503 0.443 0.409
300 0.291 0.174 0.588 0.639 0.590 0.514
400 0.360 0.214 0.700 0.751 0.657 0.571
50 0.166 0.121 0.275 0.347 0.301 0.271
100 0.230 0.155 0.431 0.516 0.462 0.409
150 0.305 0.196 0.549 0.632 0.591 0.559
0.15 200 0.361 0.228 0.656 0.731 0.689 0.649
300 0.474 0.297 0-838 0.884 0.856 0.797
400 0.568 0.357 0.906 0.937 0.903 0.843
50 0.210 0.149 0.365 0.454 0.400 0.376
100 0.327 0:230 0.580 0.659 0.624 0.569
150 0.429 0.288 0.719 0.791 0.759 0.749
0.20 200 0.513 0.341 0.822 0.873 0.854 0.832
300 0.655 0.454 0.943 0.968 0.966 0.941
400 0.761 0534 0.978 0.992 0.983 0.969
50 0.267 0.192 0.461 0.539 0.505 0.479
100 0.430 0.313 0.704 0.759 0.746 0.708
0.95 150 0.555 0.402 0.841 0.880 0.879 0.874
' 200 0.661 0478 0.914 0.936 0.938 0.930
300 0.813 0.628 0.983 0.991 0.992 0.986
400 0.895 0.724 0.994 0.997 0.998 0.997
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Appendix

In this appendix we provide proofs of Theorem 2.1, Theorem 2.2 and Theorem 3.1 and
derivation of the power by classifying a patient as infected or uninfected.

A. 1 Proof of Theorem 2.1

Following Hajek and Sidak(1967), we reindex R, as a single index R, k=1, 2, ..., N.
Then S, in (1.4) is equivalent to

Sl = ﬁ\cka(Rk), with
1 kénl
Cp = {
0 elsewhere.
s =M
a(l) = {
0 elsewhere,

According to Theorem c¢ in Hajek and Sidak(1967, P.61),

E(S) = N-a- ¢ and,
VS) = o (e o

where @, ¢, and o,° are the means of a(l), ¢, and the variance of a(J) defined in the

theorem. Then we get 2=% Mﬁg+1 , o= n1 ﬁ"(cz %= n1n2 and

O%ZI—%VL(%@N(ZMjL 1)—3M(M+1)). Both E(S;) and W(S|) can then be derived.

Since we can show that the asymptotic normality holds under the alternative, the asymptotic

normality holds under H; as a special case.
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A. 2 Proof of Theorem 2.2

Refer to the general conditions in Hajek and Sidak(1967, pp70-73).
1) the density

d(y, ) =(1—me¢(») + 7¢(y— (& — )

is absolute continuous in @ for every y.

ii) the limit

. _ oy d(v,0)—d(v,0)
d(y,0) = 1;;3 g

=g’ (y— &)
exists for almost all y.

i "1 = (T (= . 1 2
iii) 1;%f~w'd(y, O)ldy ~_f_°°| (y—2) -« V(23 14159) exp ldy

=7 Ely—a| ( ©
holds.

If follows that the locally most powerful rank test is based on the test statistic

ningc-E{ d(V(%) 0}} } Enf‘E{ a’,(V(V,) 0)}
A lav™ol ATl av™ o)

where VWP<...< ymtn

Y5, ..., Ys,, in the combined sample.

The C,'s are 0's for Yy,..., Yy, and 1's for ¥y, ..., Yo,

Now
dv,0) _ r- ¢ (y=2)
d(y,0) (1— 2 ¢(y) + 7d(y— 1)
_ —(y—2) .
l—n = AZ'M .
[1+( po e ]
Hence

7, ( (€] } n

d(V(n),O) P YN AT

{1+(1;7T)e 2

(V=) }
|

Then the test with critical region

719

is an ordered sample from G(y) and 7,<---<7,, are the ranks of
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2E

_ ( V(Yx)__ A)
—ZAV(7T+I\Z ]

> K
[1+(——1;”)e ?

is the locally most powerful rank test for H; against H, : 8.> 0.

A. 3 Derivation of the power by classifying a patient as infected or
uninfected

Let O be threshold that divides the affected and non-infected, i.e., the subject is considered
as infected if and only if Y; > 6. Then the number of infected subjects in both groups are
binomial variables. If we apply the normal approximation to the binomial distribution, it can be

shown that the power at significance level «a is

ta - (pl - pZ)
101/%1 + 172(12/”2 ’

Power = 1 — (D(\/p

where

te = Za\/bq(l/n1+1)n2), Wlth

= (1-nD1-e(@)+a(1-d(6— 1)), ¢ = 1—py,

= (- (1—-0()+a(1—®(8—-2")), ¢ = 1—p
mp1+ nopy '

p = W q=.1—z>,

and ®(x) is the standard normal distribution function.
A. 4 Proof of Theorem 3.1

Using Lehmann(1975, pp. 70-71), the asymptotic mean and variance of the Wilcoxon
rank-sum test can be written as

n = nlngbl + _%" nz(n2+ ]_),

o’ = 7’l17’l2D1(1*P1)+%1n2(7l2“1)(P2_P%)+n2%1(n1—1)(P3_17%),
where p;, p; and p; can be expressed in terms of independent random variables X, X,
Y, Y, |

XX ~ G(x), n=Pr{X<1},
Y,V ~ Gyx), po=Pr{X<Y and XY},
X, X', Y Y, all independent, p3=Pr{X<Y and X'<(Y).
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The three probabilities py, p, and ps can be computed by sums of one-dimensional integral

for our models, ie.,

b= 0.5(1-0*+ 21— D[ @ (&' /V2)+ &(— 2 ND]+22D((a" — 8)/V2),

Py = (1-2°¢0,00+2(0 - 0°2L0, — 2 )+ (1 -7 ~—a",— &)
+ 11— a, 8)+22° (1= &(a, 8 — 2 )+ 2o — ', 6 — "),

py = (1=m°40,0)+2(1— 2780, 2)+(1— 7' &(a, o)
+tl-m'—a’,—a) 2 (l-ni—a", 6= aN+ra— o', 6 =287,

I

—x,/2 — o —
tnw) = [ e e

where ®(x) and ¢(x) represent the standard normal distribution and density functions.
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