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Conditional Skewness and Kurtosis
in Natural Exponential Models?V

Chong Sun Hong?) and Han Seung Lim3)
Abstract

Let T=(Ty,..., Ts; k=2) be a minimal sufficient and complete statistic for a £

T into ( Iy, T3), where
T,=(Ty,..,T,) and Ty=(T,s,,..., Tp;1<7<k—1). This article represents a

—parameter exponential model. Consider a partition of

way to obtain higher moments such as skewness and kurtosis for the distribution 7T
and the conditional distribution of 7, given T9= £f, . These results are
illustrated by some examples.

1. Introduction

For a random variable X, the family of distribution {Ax;7); n=H} is known as a £

parameters exponential family if there exist real-valued functions { c(2),i=1,...,k, d(»)
on a parameter space H, and real-valued functions { T(x),i=1,..., %, S(x) on R, and a

set ACK such that the pdf may be written as

A )= exp[ 3 ) Tx) — dla) + S a(), a.

where [4 is the indicator function of set A. Note that ZT(X)=(Ty(X),..., Tu(X)) is

well-known as a natural sufficient statistic of the family. These detail explanations are found
in most of theoretical textbooks of statistics including Mood, Graybill and Boes (1974), Bickel
and Doksum (1976), Barndorff-Nielsen (1978), Lehmann (1983, 1986), and Lindgren (1993), etc.

If a random sample X=(X;,X>,...,X,) are taken from Ax;7) in (1.1), then its joint

pdf becomes
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M 2) = expl Bed ) 1T Hx) —nd() + SN oo, 12)

where A" is a subset of R”. Note that the distribution of X forms a & parameters

exponential family with the natural sufficient statistic
(0= (ET(X), ... BTLX)).
A reparameterization of the exponential family in (1.2) is obtained by setting 6,= c;( 7).

Then for a parameter function X 8)= L0,,...,0,)=d(75,, ..., 7., the exponential family has

the following form :

Az 0)=[ exprHiZ T{x;)—nl(& + ZJ:S(x,-)]]IA»(xl, e X). (13)
Note that if a function ¢( - ) is one-to-one, then X 8)=d( ¢;.”*(8)),i=1,...,k.
For a suitable measurable function g( +) satisfying g(£) = exp(ﬁS(x,-)), the joint pdf (1.3)
can be expressed as
At; @) =g(Yexpl 8 t—nl )14 (D, (1.4)
where 0= ZIIB,-EIITi(xj).

T in (1.4) could be easily found as follows:

0(s) = Blexp( 25,791 = explnll 6+ 5) = ni( D). 15)

The moment generating function of

Moments of T can be obtained by using the moment generating property of ¥(s). And

cumulants of T can also be derived by differentiating #/(8) in Equation (1.5). For example,
the mean vector and variance-covariance matrix of T are found in %6 8/ 8 and

nd U8 3 & o8, respectively (see Kendall and Stuart 1969; Barndorff-Nielsen, 1978;
Lehmann 1986 for more detail).

Let us consider a partition of a complete minimum sufficient statistic vector 7 into

( —I‘l’ Iz), where II:‘(T],---, Tr) and IZZ(T,MH,..., Tk;lérﬁk— 1) And define
parameters vector 8=1(48,,0,), 6,=(6,...,0,) and 05=(0,:1,...,0u1<r<k—1) The

conditional distribution of T, given 1= £, is

f j:l|12(_t1;_Qﬂlfz):g(_t)eXD[QfL— log 6(84; £2)1, (1.6)

where 6 H= Zlé’ijz T{x;) and 6(8;2)=f1,( 12;6) exp[ nX @) — & £,] which can

be defined as a partial parameter function (see Shaul, 1994). This conditional pdf belongs to a
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natural exponential family with @; as the vector of natural parameters (see Lehmann 1986,

lemma 8, p. 58). Accordingly, logb(d,;%,) in (1.6) plays the same role as #l(8) in (1.4).

The conditional moment generating function of 7T, given T3=1£, , is obtained as the

following:

w'_m_rz(ﬁ) = El EXD(Sl'Tl)]
(1.7)
= exp(logb( 8.+ s1; 1) — log b(4,; 15)) .

With similar arguments, the conditional cumulants of T, given 7T,= £, , can be derived
by differentiating log (4 ,; ;) with respect to @, . That is, the conditional mean vector and
conditional variance-covariance matrix of T';, given T5= t, , are given by the matrix of
the first and second-order derivatives of log®(8;1f;) with respect to 0y, respectively (sce

Shaul, 1994 for more detail).

In this paper, we are interested in deriving higher moments of 7 by further differentiating
{(8) with respect to 6. The skewness and kurtosis of T will be discussed. And the

conditional skewness and kurtosis of T'j, given Ty= 1, , will be also formulated by third

and fourth differentiations of logb(4;; ;) with respect to 4§, respectively.

2. Conditional Skewness and Kurtosis

It can be obtained easily the third and fourth cumulants of 7 by third and fourth-order
derivatives of #{(#) in (1.5) such that, for i=1,..., &
3
LD — BT ),
4
2LO — BT~ 1)) =30

2.1

Then the skewness s; and kurtosis &; of the statistic 7°; are presented in the following:

<Proposition 1>
__mUeee’ . KO3 6,
= (0%l )]0 05T T (na%K( )]0 6.12)?

Since the fourth cumulant of 7 has the form of second eguation in (2.1), we can say that

s; for i=1,..., k.

the kurtosis for a normal density has value 0 without any adjustments. Positive value of
kurtosis indicates that a corresponding density is more peaked around its center than the
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density of a normal curve, and negative value means that a density is more flat around its
center than the normal curve.

Similarly we can present the third and fourth cumulants of T, given T3= £, , by third
and fourth-order derivatives of logd(@i;#5) in (1.7). Then the analogous results for T,

given T9= 1, , could be found as the followings:
3*log b 0, ; 1)

L
d*logb( 8,; 1)

ik

= E(Ti— )| Ty= 1]

= E[ ( Tz'_ ﬂz’)4|12= —tZ] _3 Gi*4 ’

where 0;2= V(T\Ty=1t,) for i=1,..., 7.
Then the conditional skewness (s;) and kurtosis (k) of the statistic

T, fori=1,...,v (#<k), given To,=1;, are expressed in <Proposition 2>.

<Proposition 2>

. nd’logb(8,:1)/3 6,
T (ndlogb(dy; 119 6

nd*log b(81; £2)/0 67
(nd°logb(8,; 1,)/0 0)°

and ki = for i=1,...,7.

Also we can recognize that for i=1,...,7 (#< k), the conditional kurtosis of the sufficient

statistic 7 , given Ty=_1; , is based on value 0 as the same as that of the marginal

T; fori=1,..,k.

3. Examples

1) Bivariate Normal Distribution
Consider a random vector (X, Y) has a bivariate normal distribution with mean vector

021 00102).

u=(py, ) and covariance matrix 2= (
00103 022

The joint pdf of # random sample (X1, YD,...(X,, Y} of (X, Y) has the form of

Equation (1.4) which belongs to a five-parameter natural exponential family (see Freund and
Walpole (1987), and Mood, Graybill and Boes (1974)). Let us partition the complete minimum

sufficient statistic 7= (T, Ty) and parameter vector 0= (4,, 85) such that
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T.=(T\=3X%, T,=3Y: T3=3X.Y), T,=(T,=23X; T;=23Y)),

6, = —[2(1—0a}]"! 0,=(1— 2)*1(£1___p_/12_)
0 =16 = —[20-HA " and ay=| 0 \d oo

6, = ol (1— 0010517 (1L H2 o

3 - N -y

From the pdf of T, we obtain the parameter function

050,05 — 0:,01— 616 1
(46,0, — 62) 2

(o) = log (46,6, — 6%).

Now suppose p;=u,=0, 0;=0,=1 without any loss of generality. By differentiation of

nl(f), we can obtain the skewness vector and kurtosis vector of T as follows!

_(of2 o2 20(3+ 0%

- 2 T 2 T, » ’ )
se=(2 5 A s 0

=<_12 12 6(0* +60%+1) 0 O)

n ’ n ’ n(1+p2)2 ] ’ .
Also from the conditional pdf f S 12(_1‘ 1 §_(91|Iz), the logarithm partial parameter function

(3.1
k

)

can be obtained as

6,8 0y n Ostalts  (n—1)

n n 2

logb(8,; t5) =— logn+ + log (460,0,— 6%).

Suppose 1= ¢3=0, o0;=0,=1 without any loss of generality. By differentiation of

log b(8;; _tz), the conditional skewness vector and conditional kurtosis vector of 7T, given

. B 9 9 2.0(3+-p.2)

S Tt *(2\/ (n—1) " 2\[(14—1) (140 (r— D1+ 0% )
p :( 12 12 6(1+60°+0") )
Erie =TG- =1’ (n—-DA+05)? '

(3.2)

One can easily find that the difference between (3.1) and (3.2) is due to the degree of
freedom, because the degree of freedoms of the conditional skewness and conditional kurtosis

of T4, given 1, are all n—1. Especially, we are interested in the conditional skewness
and the conditional kurtosis of T3= 2X,rY,~ given T4=2Xx; Ts=2y; . As sample size is
P

increasing, the conditional kurtosis value decreases more rapidly than that of the conditional
skewness. The relationships between the conditional skewness (V z#—1s"7,,) and the

correlation coefficient ( ©), and the relationships between the conditional kurtosis
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((n—1) &" 1, ) and the correlation coefficient are represented in <Figure 1> and <Figure

2>, respectively. From <Figure 1> when o has a positive (negative) value, the value of the
conditional distribution of T53= ile ;Y given Ty=2x; Ts=2y; skews to the right (left).
=

And as the value of o goes from -1 to +l, the value of Vau—1s" T, 1, increases from
—9V2 to 2V2, whose absolute value is that of the conditional skewness of 7= 2 X% (or
T2=ZY%). And <Figure 2> shows that the value of (n—1) k" 7, 1, converges to 12,
which is the value of the conditional kurtosis of ZX? (or ZY%) when o goes to 1.

(n—1) £ 1,4, has the minimum value 6 at o=0.

o o o
/

. . //

' /

o - \ |
i

R T T 7 T T T T T |

1.0 0‘5 0‘0 65 10 10 £5 00 95 10
tho tho
<Figure 1> <Figure 2>
2) Multinomial Distribution
Let X=(X;,...,X}) be a random vector that has a multinomial distribution with 2 trial

and cell probabilities py, ..., Pr Where ZX,-=m, >0 (4=1,...,k) and gp,:l. The

corresponding pdf constitutes a k—1 parameter natural exponential family with 7T,=X; and

8,= log (pi/py), for i=1,....,k— 1. Then the parameter function of @ and the logarithm

, <t 0,
partial parameter function of 6, are, respectively, 1(9) = mlog()Ze +1), and

log b(6;;x;) = log(;n)-l—(m—xj) log(l+eo' ot 4 PUANSREIPLILY
j

for i#j.
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Then by the differentiation of (6 = mlog(Zegiﬁ—l), the skewness and kurtosis of X,

could be obtained as the folowings:

s, = _ (1-2p)
X fmpi(l_pz’) ’ 33)
by = (1—6p,+ 6% '
X mp;(1—p)

And from logb(8;;x;), we can get the conditional skewness and kurtosis of X, given
X;=x; (1#)), such that
S* _ ( l - pj - 2?2)
X, V (m—x)p:(L—p:i— )’
(1= ) —6p1—p) +62
(m—x)p(1—p;—p)

(3.4)

*
k Xix; =
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<Figure 3> <Figure 4>

From the conditional skewness and kurtosis of X; given x; (1#) in (3.4), one could

recognize the fact that the total trial number m and total probability 1 in (3.3) are replaced
with m—x; and 1—p;, respectively. So we would like to explore the skewness and kurtosis
for the multinomial distribution defined in (3.3). The relationships between the skewness and
kurtosis (\/;’L Sx, and m kx), and p; are represented in <Figure 3> and <Figure 4>,

respectively. When p; is less (greater) than 0.5 (0.5—p;/2 for the conditional skewness), the
skewness has positive (negative) value, so that one can say that the distribution of the
multinomial random variable X; skews to the right (left). From <Figure 4>, the value of

the kurtosis get larger when p; approaches near 0 or 1. And the kurtosis of the multinomial
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variable X; has negative value when p; belongs to (%(1—7%), %(1%—7%*)) = (0.21, 0.79).

For the conditional kurtosis of X; given x; (i¥j), this interval has changed into
1—p; '
( 2

a-70. F2a+n
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