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Improved Mid P-value Method for Statistical Inference in
Three-Way Contingency Tables
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Abstract

We propose a modified mid P-value method to reduce the conservativeness for
the inference of conditional associations in three-way contingency tables. This
improves the ordinary mid P-value method. For 2 X 2 X K tables, we propose
confidence intervals for an assumed common odds ratio based on inverting two
separate one-sided tests using the modified mid P-value. Also, an alternative and
usually even better ways of constructing intervals, based on inverting a two-sided
test, are presented. The actual probability of coverage of a 100(1— )% confidence
interval is centered about the nominal level, but the modified mid P-value approach
gives actual coverage probability even closer to the nominal level than the ordinary
mid P-value approach.

1. Introduction

When the exact distribution of the test statistic is discrete, it is known that ordinary exact
tests and confidence intervals can be highly conservative. Though exact tests are guaranteed
to control the probability of Type I error at any nominal level, we may not achieve a
probability of Type I error of the nominal level exactly. The actual probability of Type I error
may be considerably smaller. For exact inference about a parameter of interest, we condition
on sufficient statistics for unknown parameters to eliminate them. This extra conditioning
makes the distribution of the test statistic more highly discrete.

For three-way I x J X K tables, consider the hypothesis of conditional independence of

two variables, given the third one. Let N= {n,,} denote the cell counts, with expected
frequencies  {m ;). For this hypothesis, we discuss conditional tests that reduce the
conservativeness, generalizing Fisher's exact test for 2 X 2 tables. We also discuss
confidence intervals for odds ratios pertaining to conditional association. Let X, Y, and Z

denote the row, column, and layer classification, respectively. The hypothesis of conditional

independence of X and Y, given Z, is usually tested against the alternative of no
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three—factor interaction. This alternative is the loglinear model of form

logm jp=p+ AT+ A+ AE+ AT+ 2554+ 2 2, (L1
having sufficient statistics ({n;+}, {n 44}, {# +;4}). The subscript “+” denotes the sum over
the index it replaces. The null hypothesis corresponds to the special case of this model in
which all/lffy=0. Exact conditional tests utilize the distribution of {4}, the sufficient

statistics for these parameters, conditional on the other sufficient statistics, that relate to the
remaining parameters.

One way to reduce conservativeness is the mid P adjustment. According to Lancaster
(1961), the mid P adjustment utilizes half of the probability of the observed statistic. This
reduces the conservativeness due to discreteness and does not rely on randomization to
eliminate the conservativeness. But one drawback is that it can not guarantee exactness, in
the sense that the actual size possibly exceeds the nominal level, and its coverage of the
confidence interval at 100(1 — @)% level is no longer guaranteed theoretically. It comes from
the fact that the mid P approach subtracts half of the probability of the observed statistic
from the exact P-value. Mehta and Walsh (1992) conducted an extensive simulation study to
study the mid P confidence intervals. Barnard (1990) gave a philosophical discussion of
P-values including mid P. Also, Vollset, Hirji, and Afifi (1991) suggested mid P method than
the ordinary exact method in a stratified logistic regression model. Kim and Agresti (1995)
proposed modified exact inferential methods to reduce the conservativeness and showed that
two modified confidence intervals using modified exact P-value maintain at least a fixed
confidence level but tend to be much narrower. .

In this paper, we discuss a modified mid P-value. The modified mid P-value utilizes the
idea of modified P-value in Kim and Agresti (1995_). That is, it utilizes both the usual test
statistic and, at the observed value of that statistic, a supplementary statistic 7T~ directed
toward a broad alternative. By using this approach, we show that the modified mid P method
improves the ordinary mid P method, that is, it is less discrete than the ordinary one, and
leads to less conservative, and is even closer to the nominal level than the ordinary mid P in
the probability of coverage.

Section 2 discusses modified mid P-value for testing conditional independence against the
alternative of no three-factor interaction. We show the modified mid P-value is less discrete,
and leads to a less conservative test. By inverting results of tests using modified mid
P-values, we will obtain a less conservative confidence interval, in the sense that the modified
confidence interval has confidence coefficient closer to the nominal level and can be narrower
than the ordinary one. In Section 3 we propose a modified confidence interval for a common
odds ratio in 2 X 2 X K tables inverting the test based on a modified one-sided mid
P-value. Section 4 presents an alternative and usually even better way of constructing
confidence intervals, based on inverting a two-sided test with a modified mid P-value.
Computation of coverage functions can be a useful graphical diagnostic tool for assessing the
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appropriateness of methods. To compare these types of intervals, we calculate actual coverage
probability of the confidence intervals based on inverting one-sided or two-sided tests using
the ordinary or modified mid P-value. If those coverage probability of the confidence intervals
using the modified mid P-value achieves the nominal level closely when the exact test is
conservative, then the modified mid P test will be an excellent alternative to the exact test. In
Section 5 we discuss general ways of choosing a secondary statistic for testing conditional

independence in I X J X K contingency tables.

2. Modified Mid P-value

Suppose we would like to conduct an exact conditional test for categorical data using some
preassigned size a@. Denote by I’ the set of contingency tables having the same marginal
counts as the ones that are fixed by the conditioning argument for the exact conditional test.
For the test of conditional independence, for instance, I is the set of I X J X K tables of

nonnegative integers, I'={Z: Zz B =7 b Zz =P itk forall ¢, 7,k}. In general,
1 7

suppose we have a test statistic 7T, such as a Wald, likelihood ratio, or score statistic, and

suppose ¢, is the observed value of 7. If large values of T contradict the null, the usual
P-value is P= Py (T=>=t,). In the exact conditional approach, one conditions on sufficient

statistics for unknown parameters in order to eliminate them. The extra conditioning reduces
the set of possible test statistic values, making the distribution more highly discrete. Hence,
tests of nominal size @ based on the exact conditional P-value can be even more
conservative. The actual probability of Type I error can be considerably less than the
nominal value unless the sample size is reasonably large.

If an exact test is desired of arbitrary size @, supplementary randomization would be
required. A P-value corresponding to a test using supplementary randomization has the form

PU= PHU( 'y to)+ UPHO( T= to)’ (2.1)

where U denotes a uniform (0,1) random variable. This approximates the tail area by a
random proportion of the probability of the observed value of 7. It will have actual Type I
error probability of the nominal level. Even though such an adjustment would eliminate the
conservativeness completely, the inference is based on randomized decision rules and such a
randomized test is usually unacceptable.

One modification that aims at reducing the conservative bias of the exact method without
supplementary randomization is mid P-value (Lancaster 1961) method. The mid P-value is an
alternative to the usual P-value that many statisticians have recommended as a way of
compromising between having a conservative test and using supplementary randomization
( e.g., Barnard 1990). It is defined as



908 Donguk Kim

Pug=Py(T>t)+(1/2) Py (T=1,). (2.2)
It subtracts half of the probability of the observed statistic from the usual exact P-value and
replaces U in (2.1) by its expectation. The mid P-value has the appealing property that its
null expected value for a discrete distribution equals exactly 1/2, the expected P-value for a
continuous distribution. A disadvantage is that a test based on it is no longer exact, the
actual size possibly exceeding the nominal value. It is because the mid P-value subtracts half
of the probability of the observed statistic from the exact P-value.
By utilizing the modified P-value approach by Kim and Agresti (1995), we can improve the
mid P-value so that the modified mid P-value approach reduces the conservativeness and also
is even closer to the exactness. The modified mid P-value uses a partition of the sample

space that is more refined than we get using 7T alone, like the modified P-value. That is, T
constructs a primary partitioning of all tables that have the sufficient statistics fixed by the
conditional test. Then, within fixed values of 7T, 7T  generates a secondary partitioning
using some other index of the degree to which the data contradict the null hypothesis. The
statistic 77 is a test statistic directed toward a somewhat broader alternative hypothesis.
Let #, and ¢, denote the observed values of the primary and secondary statistics,
respectively. The mid P-value assigns weight 1/2 to probabilities of all tables comparable to
the observed table in the sense that 7T=/{, For the modified mid P-values, the comparable
tables are those with T=1¢, and T =t,. Thus, we can define the modified mid P-value
by
Poia =Pug(T>t)+Pu(T=t,T >t )+/2Py(T=t, T =1t,). (2.3)
Hence this is the sum of the probability of more extreme values of 7 and more extreme
values of 7' at T=t, and half of Pu(T=t¢,,T =¢,).
Like the ordinary mid P-value, the modified mid P-value has null expected value equal to
1/2. The result is easily obtained by noting that the modified mid P-value is a special case
of the usual mid P-value using a more refined partitioning of 7 and 7 . The ordinary mid
P-value uses a partitioning based on 7. The modified mid P~value uses a partitioning based
on T and 7T within 7. We assume that T and 7~ have positive values. Let Gap(T)
denote the minimum difference between two consecutive values of 7. Define a new statistic
T '=Tx Max(T")/ Gap (D) + T’. If Min (T’) equals 0, we transform from 7T to T +1
in order to avoid ties in T". Then, T°( Z,)> T*( Z,) for all tables Z;,, Z, with
T(Z,)> T(Z;). Let t, denote the value of T~ for the observed table. Note that a
partitioning of the sample space using 7 and 7  within T is equivalent to a partitioning of
the sample space using 7. Since there are no ties, ordering tables using 7 and T

within T is equivalent to ordering tables using 7. Then, the sum of half of
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Py(T=t,, T '=t,/) and the probability of more extreme values of 7  at T=/{, and
more extreme values of 7 is equivalent to the sum of half of P HU(T*=L‘2) and the

probahility of more extreme values of T*. That is,

Poia =Py (THE)+Q/DP (T =1,). (2.4)
Hence, the modified mid P-value is a special case of the mid P-value with a more refined
partitioning, and its null expected value is equal to 1/2.

As the mid P-value subtracts half of the probability of the observed statistic from the
ordinary exact P-value, the modified mid P-value and the modified P-value (Kim and Agresti,

1995), denoted by P*, have the following property :

P*mid=P*__%PHO(T= t,, T'=1,). (2.5)

The modified mid P-value subtracts half of the probability of tables of T=¢, and T =1¢,
from the modified P-value, and the modified P-value is defined as
P'=Pu(T>t)+Pu(T=t, T >t,).

This is less conservative and does not allow randomization to eliminate the conservativeness.
Another possibility for the secondary partitioning is to use the null table probability. Let

B={Z:Z e I T=t, P(Z)<P(N)}, where the probabilities are computed under the null.
The modified P-value is then P,=Py(T>¢t)+Py(B). The difference between the
modified P-value and modified mid P-value is less than the difference between the ordinary
P-value and ordinary mid P-value. That is, (P"'— PLi)<(P— P .i0). One can calculate this

modified mid P-value for any test statistic having a discrete distribution.
2.1 Examples

We consider the test of conditional independence in three-way contingency tables under the
assumption of no three-factor interaction. We will illustrate the ordinary and modified mid
P-values using 2 X 2 X 3,2 X 2 X 4, and 2 %X 2 X 18 contingency tables. For

2 X 2 X K tables, the exact test utilizes the score statistic as a test statistic T=Z:n“k,
given  {# 144 Mors % 11p ® +96). It assumes homogeneity of the odds ratios in the

2 X 2 X K contingency tables. Then one could use the score statistic for the general

alternative for the secondary partitioning. This is simply T'ZZ.X%, where X% denotes the

Pearson statistic for testing independence in the kth partial table.
We illustrate the modified mid P-values using Table 2.1, taken from Mantel (1963). Let

P=penicillin level, D=delay, and C=whether cured. Under the assumption of a constant
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odds ratio & between D and C at each level of P, we test Hy: =1 against H,: 6>1.
Our alternative is the higher cure rate for immediate injection. For the first and last table, the
conditional distribution of #yy, is degenerate, hence we conduct the test using the three
remaining tables. Table 2.2 is taken from Agresti (1990, p. 256). It classifies poliomyelitis
cases by age, paralytic status, and by whether the subject had been injected with Salk
vaccine. We take four age groups that seem to be relatively sparse. For another example,
Table 2.3 is the “crying babies” data given by Cox (1970, p. 5), a 2 X 2 X 18 table. Only
one child was treated on each day.

For asymptotic test using Table 2.1, in order to study the association between D and C,
we test conditional independence against no three-factor interaction. The likelihood-ratio

chi-squared statistic for testing the fit of no three—factor interaction model equals 7.494, with

d.f. = 2. The estimated association parameter, which is unconditional maximum likelihood
estimate, is 2.550 with s.e. = 1.175. The likelihood-ratio chi-squared statistic for testing
conditional independence, assuming no three-factor interaction model,

G (PD, PO){(CD, PD,PC)], is 14.294—7.494=6.800 withd.f.=1. The asymptotic
P-value, when treated as chi-squared on a single degree of freedom, is 0.009. There seems
to be very strong evidence of higher cure rate for immediate injection. However, the data is
sparse enough to make large-sample approximations questionable. Likewise, for Tables 2.2 and

2.3, the asymptotic P-values are (0.029, 0.031, respectively.
For the modified mid P-value, we can use 7 = 2>,X% or the table probability for the

secondary statistic. For Table 2.1, P ,q=0.011 and P’;q=0.002 for both modified mid
P-values using X2.X% or the table probability. Likewise, for Table 2.2, we have P ,q=0.020,
and P’;;=0.022 for both modified mid P-values using 2,X% or the table probability. For
Table 23, P,q=0.028, and Pq=0.024 with 7°=2.X% and 0021 with the table

probability. Figures 2.1 and 2.2 present the cumulative distribution functions of the modified

exact P-value and the modified mid P-value using 7 =2.X%, and the corresponding

cumulative distribution functions using the table probability for 7T, respectively, for null
conditional distributions based on the margins of Table 2.1. The modified mid P-value jumps
and exceeds the nominal value, while the modified P-value jumps closely to the nominal value
and never exceeds it. The gap between the actual size and the nominal value is smaller for
the modified mid P-value than for the modified P-value. We can see this by drawing a line
connecting (0,0) and (1,1) in each Figure.

Figures 2.3 and 2.4 display the cumulative distribution functions of the ordinary mid P-value
and the modified mid P-value using 7° = >,X% and the corresponding cumulative distribution
functions using the table probability for the modified mid P-value, respectively, for the null
conditional distribution based on the margins of Table 2.1. Though tests based on the
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ordinary and modified mid P-value are not exact, the gap between the actual size and the
nominal level tends to be less for the modified mid P-value than for the ordinary mid

P-value. One way to measure how close the cdf of P-value is to.the uniform c¢df is by the

measure
M'—_fl F(x)—G X) dx

where F=cdf of P and G= uniform cdf. M is bounded by 1/2, and large value of M
implies the severe discrepancy between two distribution functions. Using Table 2.1 with

T =>X2 we have M=0.055 for P g and M=0.022 for P,y For the exact P-values,
we have M=0.111 for P, and M=0.045 for P"*. For Tab1e>2.2, we have M=10.038 for
P nia, and M=0.003 for P4 For Table 2.2, the discrepancy between the actual size and

the nominal level is negligible for the modified mid P-value, and the amount from using

modified mid P is only 7.9% of that from using ordinary mid P. We can see the modified
mid P has a distribution that is less discrete.

Table 2.1. Example 1 for analyses. Table 2.2. Example 2 for analysis.
Response Paralysis
Penicillin PO Age Salk Vaccine
Delay :
Level Cured Died No Yes
None 0 6 : Yes 3 2
18 1 1/2 Hour 0 5 10-14
No 3 2
14 None 3 3
Y 7 4
1 1/2 Hour 0 6 15-19 e
None 6 0 No 1 6
172
1 1/2 Hour 2 4 Yes 12 3
20-39
! None 5 1 No 7 5
1 1/2 Hour 6 0
None 2 0 40+ Yes ! 0
4
1 1/2 Hour 5 0 No 3 2

Source: Mantel (1963) Source: Agresti (1990)
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Table 2.3. Example 3 for analyses.

Day Group Response
Not Crying Crying

1 Treated 1 0
Control 3 5

2 Treated 1 0
Control 2 4

3 Treated 4 0
Control i 4

4 Treated 0 1
Control 1 5

5 Treated 1 0
Control 4 1

6 Treated 1 0
Control 4 5

7 Treated 1 0
Control 5 3

8 Treated 1 0
Control 4 4

9 Treated 1 0
Control 3 2

10 | Treated 0 1
Control 8 1

11 Treated 1 0
Control 5 1

12 Treated 1 0
Control 8 1

13 Treated 1 0
Control 5 3

14 Treated 1 0
Control 4 1

15 | Treated 1 0
1 Control 4 2

16 Treated 1 0
Control 7 1

17 Treated 0 1
Control 4 2

18 Treated 1 0
Control 5 3

Source: Cox (1970)



Improved Mid P-value Method 913

P(P-value <=x)

o
e |
1= S
............. - = '
w0
o
|
o
SH Modified P-value
© Modified Mid P-value
o] s
o

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 2.1. Cumulative distribution functions of the modified exact P-value and

the modified mid P-value with T = ZX%, for the margins of Table 2.1.
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Figure 2.2. Cumulative distribution functions of the modified exact P-value and

the modified mid P-value with T = P(Z), for the margins of Table 2.1.
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Figure 2.3. Cumulative distribution functions of the ordinary mid P-value and

the modified mid P-value with T = ZX%,, for the margins of Table 2.1.
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3. The One-sided Modified Mid P Confidence Interval

Discreteness also affects interval estimation. An exact confidence interval for a parameter
can be constructed by inverting the exact conditional test. The ordinary confidence interval is
based on Inverting two separate one-sided tests using the ordinary P-value. Due to
discreteness of the test statistic, we get quite conservative as well as unduly wide confidence
interval. The actual confidence coefficient is at least the nominal level. In order to overcome
these problems, we construct confidence intervals using modified mid P-value based on
inverting two separate one-sided tests.

For an exact confidence interval for a parameter, we invert an exact conditional test about
that parameter. To illustrate, suppose we want to estimate an assumed common odds ratio,
f,in a 2 X 2 X K contingency table. The reference set I" is defined in Section 2, and let

r={2: Zer, gn11k= t}. Ordinary exact confidence limits for the common odds ratio

are constructed from the conditional distribution of T=;n 11k, that is,

t
LA 3.1

Y] %42k

where c¢,= I, , and where fon=2.max(0,%,4,— 7 1+9,) and

_ 1
€T, 2k Ri+r— Rk

t max = z:min(n L4k M 418)-
The ordinary interval (Cox 1970, Gart 1970, Mehta et al 1985, Vollset, Hirji, and Elashoff
1991) is based on inverting two separate one-sided tests. It equals (8 .,8.,), where for

tmingtoétmaxr

at 6=0_: P(0) = XL PtO=7, (3.2)

NCYI o

at =0, : P,(6) = tSZtP(t,e)=

When {,= f nin, the lower endpoint is 0; if {,=f nax, the upper endpoint is oo, It is easily
shown that (6_(#,8.(#) has a confidence coefficient at least 100(1—a) (Mchta et al

1985). Due to discreteness of the distribution of 7T, we have only a conservative confidence
interval, and the actual confidence coefficient is unknown.

For confidence intervals for a common odds ratio based on either inverting two separate
one-sided tests or inverting a two-sided test, one can construct even narrower intervals,
albeit not exact ones, by inverting the tests based on the modified mid P-value. The ordinary
mid P confidence limits based on inverting two separate one-sided tests are found using the
functions
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Poiaar(8) = Py(6) =% P(t;6)),
Poia(8) = Py6) =% Pt50)).

(3.3)

The lower limit, 8 _, is the smallest of all &'s to satisfy P niay(6) 2%, and the upper limit,

6 4, is the largest of all @'s to satisfy Pmid(g)(ﬁ)zg. Though approximate, this type of

confidence interval based on the ordinary mid P-value does not guarantee the nominal level
1—a, but they were shorter on average than the corresponding exact intervals (Mehta and

Walsh 1992). We can construct better intervals by inverting the tests based on modified mid
P-values.

Following the modified approach based on using a one-sided modified mid P-value, let
B(®={Z: ZeI''T=t, T'(6)=t,(0)}. The modified mid P confidence interval based on

inverting two separate one-sided tests uses
Puan(6) = Pi(6)— 5 P(B,(6):0), (3.4)
Puaco(0) = P3(6)— 5 P(By(6):0),
where P%(6) and P%(6) are defined as
PO = ZP(tO+PAB6); 6], Py = 2 PtO)+AB0);0),

where
B(&)={Z: zZzeI', T=1t, T'(O)=t, (8}, o B(O={(Z: Zel' T=t, PZ, )< P(N, 0)},
which is depending on the secondary statistic. The limits are determined by the same method

used for the ordinary mid P confidence interval, using Phg1(8) for the lower limit and

Priay(8) for the upper limit.

This approach can give narrower intervals than those obtained by inverting the one-sided
test with the ordinary mid P-value, depending on the discreteness of the distribution of the
test statistic. The modified mid P method gives actual coverage probability closer to the
nominal level and it has less undercoverage than the ordinary mid P. We illustrate these
confidence intervals for a common odds ratio using Tables 2.1, 2.2, and 2.3. For table 2.1, the
95% confidence interval by inverting one-sided test is (1.34,266.54) based on the ordinary
mid P-values and (2.22,56.00) based on the modified mid P-values using 2.X3(6) or the
table probability for 7. Using Table 2.2, the confidence intervals are (1.05,10.89) using the
ordinary mid P-values, (1.03,11.19) using the modified mid P-values with 2.X3%(6) or the
table probability for 7 . For Table 2.3, the confidence intervals are (0.98,16.89) using the
ordinary mid P-values, (1.01,13.61) using the modified mid P-values with 2.X%(6), and



Improved Mid P-value Method 917

(1.04,14.85) using the modified mid P-values with the table probability for 7T°. The
corresponding  95%  confidence intervals by using large-sample approximations are
(1.28,128.12) for Table 2.1, (1.10,11.29) for Table 2.2, and (0,99, 17.64) for Table 2.3. For
tables 2.1 and 2.3, the modified intervals are narrower than the ordinary one, and they are
included in the interval using large-sample approximations. From the intervals using Table
2.2, we think the modified mid P method provides some adjustment on the ordinary mid P
method so that it reduces the undercoverage of coverage probability. The accuracy of the
normal approximation can be influenced by the skewness, kurtosis, and the discreteness of the
distribution of the test statistic. Furthermore, in small samples, or when there are many
nuisance parameters, the use of unconditional maximum likelihood estimator can be quite
misleading, and the corresponding confidence intervals using large-sample approximations can

also be inaccurate.

4. The Two-sided Modified Mid P Confidence Interval

Using a two-sided approach, Sterne (1954) constructed a confidence interval for a single
binomial parameter, and Baptista and Pike (1977) constructed a confidence limits for the odds
ratio in a 2 X 2 table. This two sided confidence interval also is conservative. As two-sided
approach tends to give an interval that is usually narrower than the one based on inverting
two separate one-sided tests (Kim and Agresti 1993), we can construct a better interval using
two-sided mid P-values. Though these cannot guarantee achieving at least the nominal
confidence level, one could define mid P versions of the ordinary two-sided and modified
two-sided intervals and the modified mid P approach gives coverage probability even closer to

the nominal level than the ordinary mid P approach. For testing a particular value of 68, a

P(0) = (¢ Pt EP(W))P( £.9).

Then, we define two-sided mid P-value as

P8 = P(e)_%P({ZlZEF,P(f}e)——_P(fo;e)}). (4.1

two-sided P-value is given by

The two-sided mid P confidence interval consists of the values of & for which this two-sided

mid P-value equals at least a.
Following the modified approach, one can construct a modified confidence interval based on
two-sided tests by using a modified mid P-value. We define a modified two-sided mid

P-value for testing a particular value of & as
Pia(0) = P*(@)—%P({Z: Zel',P(0) = Kt,;0), T'(0) =t,(O)}), (4.2)

where P'(8)=P(0)—P({Z:ZeT, P(t;0) = P(t,0), T (8)<t,/(8}). For the modified
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two-sided confidence interval, we consider the shortest interval that contains all of the values
of @ for which P,4(6) 2a.

We illustrate these confidence intervals for a common odds ratio using Tables 2.1, 2.2, and
2.3. For Table 21, the 95% confidence interval by inverting a two-sided test is
(1.38,131.51) based on the ordinary mid P-values and (1.38,35.51) based on modified mid
P-values using T° = 2X3(6). For Table 2.2, the confidence intervals are (1.12,11.04) for
both ordinary mid P-value and modified mid P-value with 7% = >,X3(6). Using Table 2.3,

the confidence intervals are (1.01,12.58) and (1.01,10.29) using the ordinary and modified
mid P-values with 7T = 2.X%(6), respectively. For Tables 2.1 and 2.3, the confidence
interval constructed by using ordinary two-sided mid P-value is shorter than the ordinary one
based on two one-sided mid P-values, and for each type of interval, the modified interval is
narrower than the ordinary one. Table 4.1 summarizes these 95% confidence intervals using
Tables 2.1, 2.2, and 2.3.

The performance of the modified mid P method can be studied by computing the coverage
probability of confidence intervals. For the conditional distribution having the fixed marginal
counts of Table 2.1, Figure 4.1 shows actual coverage probability as a function of the true
log odds ratio, for the 95% confidence intervals based on inverting separate one-sided tests
using the ordinary mid P-value or the modified mid P-value with 7" = 2, X%(8). The exact
method vyields a coverage exceeding the nominal level, depending on the degree of
conservativeness, whereas the coverage of the mid P-value fluctuates about the nominal level.
For either approach, for sufficiently large |log@|, the actual probability of coverage of a
100(1 — @)% confidence interval is centered about 1— /2 and that of the modified mid
P-value deviates less from 1— a/2. Figure 4.2 gives an analogous display for the confidence
intervals based on inverting two-sided tests using the ordinary mid P-value or the modified
mid P-value with 7° = 2 X3(6). There is an advantage to the interval based on the
modified mid P-value. For either approach, the actual probability of coverage of a
100(1 — @)% confidence interval is centered about the nominal level, and that of the modified
mid P-value is even closer to the nominal level than that of the ordinary mid P-value.

Figures 4.3 and 4.4 show analogous display of actual coverage probability using Table 2.2,
that has one more stratum than Table 2.1. We can also see the advantage of modified mid P
approach. For both one-sided and two-sided modified approach, actual coverage probability is
very close to the confidence level with almost negligible undercoverage. Actually, for the
one-sided modified interval, the coverage probability is almost the same as the confidence
level except for large |log@|, and the two-sided modified approach has coverage probability
almost close to the confidence level for most values of 8. We see the modified approach does
not have much conservativeness and maintains almost guaranteed level. For intervals using
mid P-values, we suggest the use of the confidence interval based on inverting two-sided
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tests using the modified mid P-value.

Table 4.1. Various 95% confidence intervals for the common odds ratio using mid P-value.

Method Data set 1 Data set 2 Data set 3
Ordinary 1-sided mid P (1.34, 266.54) (1.05, 10.89) (0.98, 16.89)

Modified 1-sided mid P (P") (222, 56.00) (1.03, 11.19) (1.01, 13.61)
Modified 1-sided mid P (P}) (222, 56.00) (1.03, 11.19) (1.04, 14.85)

Ordinary 2-sided mid P (1.38, 131.51) (112, 11.04) (1.01, 12.58)
Modified 2-sided mid P (P") (138, 3551) (1.12, 11.04) (1.01, 10.29)

5. General ways of choosing T in I x J x K tables

We discuss a general way of choosing a secondary statistic T' to generate a secondary
partitioning of tables having the observed value of T in I x J X K contingency tables. For
testing conditional independence of X and Y, given Z, assuming no three—-factor interaction,

we let Ty be the test statistic when both X and Y are nominal, let 7yo be the test
statistic when X is nominal and Y is ordinal, and let 7o be the test statistic when both X

and Y are ordinal. Also, let T, Tho and Tp be the corresponding test statistics when we
permit three—factor interaction. Kim and Agresti (1997) discussed these statistics and obtained
precise estimates of P-values for exact conditional tests in I x J X K contingency tables.

They also applied tests with homogeneous association alternatives to nearly exact tests of
marginal homogeneity for multivariate responses having the same categorical scale for each

component. These are score statistics. To form a modified mid P-value, T’ is a statistic
directed toward a broader alternative. Then 7~ can catch some information about the validity
of the null hypothesis when the assumed alternative for 7 is not exactly satisfied. We focus
on score statistic for 7T, because inferential analyses using the exact distribution are then
computationally much simpler. Ordinary P-values for these six tests correspond to six

loglinear models for alternative hypothesis.
The general rule to construct the modified mid P-value is as follows. We use a score

statistic for 7T, in order to have consistency and our principle is to choose a T’ from the
next most general alternative, while keeping the same assumption as 7T about three-factor
interaction. Then, for example, assuming no three-factor interaction, (7, T7) is (Two, Tw)

for the nominal-by-ordinal case, since the nominal-by-nominal case is more general, and it

also corresponds to the next most general alternative assuming no three-factor interaction. For
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the ordinal-by-ordinal case, the next most general alternative corresponds to ' the

nominal-by-ordinal case. Hence (T, 7T°) is (To, Tno).  Accordingly, for  the
ordinal-by-ordinal case permitting three-factor interaction, (7, T") is (T, Tho). There

might be other principles to form 7', for example, to select 7 from the most general
alternative among all cases, but our principle can be recommended because the modified mid
P-values can be defined for most cases using this principle, and it can utilize the ordinality of
classification variables. Table 5.1 summarizes test statistics for the construction of ordinary

and modified mid P-values for testing conditional independence in [ X J X K contingency
tables using this principle. When [I= J=2, three statistics assuming no three-factor

interaction, T, Two, and Ty, coincide for unit-spaced scores, and utilize Z:nllk- Also,

when I=J=2, we get Tn= Thno= To.

Table 5.1. Test statistics for the construction of the ordinary and modified mid P-values for

testing conditional independence in I X J X K contingency tables.

Ordinary P-value Modified h{id

P-value P
T (T, T)

Assuming no three—factor interaction

Nominal-by-Nominal Ty (Tn, Tn)

Nominal-by-Ordinal Tno (Tno, Tn)

Ordinal-by-Ordinal To (To, Tro)

Permitting three-factor interaction

Nominal-by~Nominal Ty (Ty, P(Z))

Nominal-by-Ordinal Tho (Tho, Tw)

Ordinal-by-Ordinal To (To, Tho)

6. Conclusion

For the test of conditional independence for categorical data, available tests are exact or
nearly exact test based on the exact distribution of test statistic, such as exact P, mid P, and
modified mid P, asymptotic test such as test based on loglinear models using

Gl (XZ, Y2)|(XY,XZ,YZ)], and Cochran-Mantel-Haenszel (CMH) test (Mantel and
Haenszel 1959). For 2 X 2 X K contingency tables, both the model based statistic and CMH

statistic have approximately a chi-squared distribution with df=1 under the null hypothesis
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of conditional independence when there is no three-factor interaction. CMH test is
inappropriate  when the association changes dramatically across the strata (Agresti 1990).
Asymptotic results require many observations in each stratum. If data is so sparse that
asymptotic theory does not hold, model based tests are not appropriate, and CMH can be
applicable. But an exact test is preferred over CMH or model based test when the sample size

is small. Uniformly most powerful unbiased test of conditional independence for 2 X 2 X K
tables is based on Znuk. We can think the mid P approach is some kind of continuity
correction for estimating the tail area of a discrete distribution, whereas some asymptotic

method such as CMH statistic includes a continuity correction (1/2). The modified mid P
method reduces the conservativeness of exact method that comes from the high degree of
discreteness of the test statistic and also improves the ordinary mid P method so that it gives
nearly exact results.

When a test statistic has a discrete distribution, the exact methods lead to conservative test,
and it is generally not possible to have confidence intervals with a specified coverage level.
Only exact method guarantees coverage probability not below the specified level. But actual
coverage probability may be much higher than the level. We have shown that use of a
modified mid P-value leads to tests and confidence intervals that are less conservative than
the usual one. The improvement can be considerable when K is large but the sample size is
not. We prefer modified mid P tests and confidence intervals over the ordinary ones, because
they are less discrete and less conservative than ordinary ones and are closer to the nominal
level, while the exact test is conservative. The modified mid P-value is nearly exact. We
prefer confidence intervals based on inverting two-sided tests using modified mid P-value
over those based on inverting two separate one-sided tests, because they tend to be less
conservative and nearly exact. Hence, modified mid P method provides more adjustment for
the excessive conservativeness of the ordinary P and are centered about the nominal level
with narrower fluctuations without possibility of severe undercoverage than the ordinary mid
P. The modified mid P procedure will be an excellent alternative for an exact test when the
exact test is conservative and the large-sample approximations is poor, for example, for those
tables whose sample size is small or contingency tables are sparse. Some statistical software
(e.g., StatXact 1991, Vollset and Hirji 1991) provides only the ordinary one-sided mid P
capability in exact procedures by inverting separate one-sided tests. We suggest the modified
mid P method, because it provides almost exact results with less conservativeness.

The idea of a modified mid P can be applicable to any contingency tables, and it can be
calculated for any test statistic having a discrete distribution. One application can be the exact
tests of no three—factor interaction. Zelen (1971) presented an exact test of homogeneity of
odds ratios in 2 X 2 X K tables. For an exact test of no three-factor interaction for

2 X 2 X K tables, an efficient score statistic against the saturated model is the Pearson
statistic for testing the fit of that model (Agresti 1992). We could use this score statistic as a
primary statistic and the table probability as a secondary statistic to define the modified mid
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P-values. Another example is to consider the modified mid P confidence interval for the
linear-by-linear association parameter in linear-by-linear association model (Agresti 1990).
Under the alternative, the conditional distribution of test statistic 7=2, 2 u;v,n; has a
noncentral hypergeometric distribution. By using a modified mid P confidence interval, we
could reduce the conservativeness of the Agresti-Mehta-Patel (1990) interval.

When the exact or modified mid P test is infeasible and the application of large-sample
approximations is questionable, one suggestion can be to use the saddlepoint approximations.
Saddlepoint approximation provides good approximation to exact test and reduces the degree

of conservativeness.
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Figure 4.1. Coverage probability for confidence intervals based on inverting

one-sided tests using mid P-values with T =2Xi (8, for conditional
distribution based on margins of Table 2.1.
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Figure 4.2. Coverage probability for confidence intervals based on inverting
two-sided tests using mid P-values with 7 =2>.X%2(6), for conditional
distribution based on margins of Table 2.1.
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Figure 4.3. Coverage probability for confidence intervals based on inverting
one-sided tests using mid P-values with 7' =2>.X%(6), for conditional
distribution based on margins of Table 2.2.
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Figure 4.4. Coverage probability for confidence intervals based on inverting
two-sided tests using mid P-values with T =2.X%(6), for conditional
distribution based on margins of Table 2.2.
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