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An Approximate Parameter Orthogonality
Kwan Jeh Leel

Abstract

An approximate parameter orthogonality is defined, which is called an @«
-approximate orthogonality. The useful consequences of parameter orthogonality
mentioned by Cox and Reid(1987) can be shared by an «-approximate orthogonality.
If a>1/2, the consequences of orthogonality and «-approximate orthogonality are
asymptotically equivalent.

1 Introduction

In multiparameter statistical models we often focus on one or a few parameters with the
others being treated as nuisance parameters. The subject of inference on interest parameters
in the presence of nuisance parameters is at the core of statistical problems with
multi-dimensional parameters(Godambe 1976, Godambe and Thompson 1974). Even though
there can be no generally optimal method for elimination of the effect of nuisance parameters,
there are several approaches used to reduce the effect of nuisance parameters. A procedure
used in the case is to replace the nuisance parameters in the likelihood function by their mies
and examine the resulting "profile” likelihood as a function of the parameter of interest. This
procedure is known to give inconsistent or inefficient estimates of the interest parameters.
Another method, introduced by Anderson(1970), is to use the conditional likelihood. The
conditional likelihood approach is achieved by conditioning the data on the minimal sufficient
statistics for nuisance parameters. The merit of this approach is to focus the inference on a
genuine likelihood which depends only on the parameter of interest so that the effects of
nuisance parameters can be reduced. However, expect for some important special cases such
as regular exponential families, the above approach may not be desirable as in general: the
dimension of the minimal sufficient statistics is greater than the number of nuisance
parameters. Other than two methods above, there are several approaches such as the
modified profile likelihood of Barndorff-Nielsen(1983) and Barndorff-Nielsen and Cox(1994), the
conditional profile likelihood of Cox and Reid(1987), the Bayesian approach of Box and
Cox(1964) and Pericchi(1981), the orthogonalization of parameters of Cox and Reid(1987) and
Amari(1985), etc.
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There are a number of advantages, conceptual and mathematical, when parameters are
orthogonal. Orthogonality of parameters implies that the Fisher information matrix is diagonal,
that is, the corresponding components of the score statistic are uncorrelated. The formal
definition and some asymptotic properties of orthogonal parameters will be discussed later.

In this paper we define the «a-approximate orthogonality of parameters and see that the
approximately orthogonal parameters share some asymptotic properties of orthogonal
parameters.

2 Definition and Consequences of Orthogonal Parameters

We consider random variables (r.v.s) X;,X,, -, X, which are independent and

identically distributed (7.7.d.) according to a distribution with density f(x|6), where the
parameter 6 is possibly a pXx 1 vector, and write X = (X;, -+, X,).

The joint density of X, X», -, X, is given by

oy, o, 2l 0) = T A2 6) = L(61).

Each realization x= (x|, -+, x,) produces a different function L( - |x), which called the

likelihood function for 8. The logarithm of the likelihood is denoted by /(8) = mL(8|x).

The vector of partial derivative functions of /(@) with respect to the components of @ is

; _ (90K8) dKE&) oK 8) \-
1(6)—( 601 ’ 602 s TN agp ) .

The likelihood equation then is a vector equation representing a system of nonlinear
equations in the p unknown §&,. We shall use the notation 1(6) for the matrix of second

partial derivatives with (s, #) position given by

oy — (_0°K6)
1(0)_( aesaﬁt)pxp-

The Fisher information, or information matrix, for & is defined as

16) = [— ECON = L (62) . M
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Note here that i refers to information per observation, which will be assumed O(1l) as
n — oo, We define the parameters are orthogonal if the Fisher information matrix is
diagonal, that is, i, =0 for s+ ¢ at (1) above. There is the construction of orthogonality in
Amari1(1985) and Cox and Reid(1987). If off-diagonal elements of the Fisher information matrix
is zero for all parameters, it is sometimes called global orthogonality. Meanwhile, if 7,=0
for s t holds for only s and ¢ components of &, then @, and 6, are said to be locally

orthogonal. It is also mentioned in Amari(1985) and Cox and Reid(1987) that the existence of
an orthogonal paramerization is guaranteed when a parameter of interest is a scalar, whereas
global orthogonality is possible only in special cases.

There are roughly four reasons for wishing to consider an orthogonal parameterization
mentioned by Cox and Reid(1987): computation, approximation, interpretation, and elimination
of nuisance parameters. For simplicity, suppose 8= (¢, A) has just two components. Then

the consequences of orthogonality of ¢ and A are

(i) the mles of ¢ and A are asymptotically independent;

(ii) the asymptotic standard error for estimating ¢ is the same whether A is known or not;
-1
(i) ¢, — 9= O,,(n_l) provided A— A= 0,(n 2), where ¢, is the mle of ¢ when A
is given,

(iv) the computation in numerical determination of the mles (2’, ) may be easier.
3 Main Results
The useful consequences of parameter orthogonality mentioned in the previous section can

be achieved in some cases where the off-diagonal components of the Fisher information
matrix are not zero exactly. We define some approximate orthogonality of parameters.

Definition 1 Let iy, be (s, t)-component of Information matrix I(8) for

0=1(6y,,8,). If for a=0 and s+t
Z.sl= O(n_a),

then 6, and 6, are said to be a-approximately orthogonal If all the off-diagonal

components of the Fisher information matrix are O(n ~¢), then 0 is said to be globally «a
-approximately orthogonal.
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For simplicity, suppose 6= (¢, 1) has just two components. We also assume the
regularity conditions required for maximum likelihood theory in Cramer(1946, pd01) or
Serfling (1980, p144). We have the following results.

Lemma 1 Let (X, Y) be a bivariate random vector with joint pdf or pmf Ax,v). Then
Xand Y are independent random variables if and only if there exist functions g(x) and

h(y) such that, for every x= R and yE R,

Rx, y)=g(x) h(y).
The proof of the Lemma is in details in Casella and Berger(1990, pl42).

Theorem 1 If for 6= (¢, A) and a=(, parameters ¢ and A are a-approximately
orthogonal, we have the following results.

(i) the mles of ¢ and A are asymptotically independent;
(ii) the difference between the asymptotic standard error for estimating ¢ with unknown A

and that with known A is OT(n™%), where OY(n™ ) denotes nonnegative O(n~%);
. ~1
(iii) ¢, — 9= Op(n—mm(aﬂ/z’”) provided A — A= O,(n 2), where ¢, is the mle of ¢
when A is given.
Proof. Suppose two components of 8, ¢ and A, are «@-approximately orthogonal, i.e.,

2.4,3 = O(?’l‘a).

Since the asymptotic distribution of a and A is a bivariate normal and the mles are
asymptotically efficient, V(n)(@— ) is asymptotically bivariate normal with (vector) mean

. . -1 .
zero and covariance matrix 2= I~ '(§), where we can write

= ( Lgg Zﬁw) -1
Loa Tax
Thus

=..1.. i%" _.iW.
Tgglix T lgalga \ —lgar gy

Note here that
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1 _ 1
2yl aa T Tgal ga £ggl aa(l — 7 yat yal ¥ gyt 22)
. . - . 2
Taal ga Toal ga
= — 1 1+ KA + $A” ¢ + .- (2)
Loyl ana Lygta gyl aa

Since both 74, and i;; are assumed O(1), and off-diagonal component 7, is O(n”°),

we can rewrite (2) as

1 — 1 + —2a
T Tain i¢¢z',u(1+o (n™ %)) (3)
Using (3), we can write
s [ To(1+ 07 (n7*)) O(n™“) , )
o(n™) A+ 0T (n7))

which shows (ii).

The exponent of bivariate normal density of ( ?b ) can be written

— 5=, A-DZHP— A=
=5 (@— ¢, 2=NKO (D=4, 2=

= =5 (=it A=Diu+200-HA=Diy). 6

_1
The last term of (5) is O,(n~ ) from the fact that 2/—¢=Op(n 2)  and

_ 1
A—A=0,n ?). Note here that for a>0
eXD(Op(n_a)) - 1 + Oﬁ(n—a)+(0p(n_a>)2/2+"'.

Thus the exponent of bivariate normal density can be factorized up to the order O,,(n_a).

That is, we can write the exponent of bivariate normal density up to the order Op(n N,

— 5@ = Pl + (A= D%
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By the Lemma above (¢, A) are asymptotically independent up to the order O,(n" ).

To show (iii), we write the log-likelihood function near the mles (¢, 2) as

(D D+ 5= T4 =D =270 = DA=D— 7u@-D}+0,160-21%, ®©

_1
where, for example, 7 j, =[—08%(¢,A)/3¢*],. 5 and Je=1g+ O)n *).

Differentiating (6) with respect to ¢, we have

a/ A _nmy o —,‘7} o _1 ___ZL
¢ —2{ 270 =) =2 744 N+0,(n ?).

Thus ¢ . satisfies

_1
0=2{-27u( 5= D=27uQA=D}+0,n *)
It follows that

-9 = ——2EQ-N+0,n7Y)
Ty

== =R G = D+0,n7Y)
Loy
— mi L+a.1J
=0,(n mn{z )
1
since iy=O0n"% and A—2A= 0, n ?). This completes the proof. The theorem is

extended to the case of p-dimensional parameters, which will not be described here in

details.

4 Example

For the location-scale families with density (1/A)f((x — ¢/, 2>0, Ax)>0 for all x,

the elements of the information matrix are
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K¢, A) = ( Loy ’}M),

Lo

where
ST B A CY]
iw= 7 [I 5 ey,
ia= 45 [12E9 115 ay,
and

i = 712‘ fy[%ji))‘]zf(y)dy.

See Lehman(1983, pl28) for details. Several people in the discussion of the paper by Cox
and Reid(1987) pointed out the interesting orthogonality of ¢+ &4 and A for suitable % in
the location~scale model. However, £ is a fairly complicated function of the distribution of the
ancillary statistic or of the ancillary statistic itself so that it is difficult to calculate % in
numerical works.

Instead, the covariance term ¢4 is zero whenever f is symmetric about the origin. That
is, if the standard density of the location-scale model is symmetric about the origin, then the
parameters ¢ and A are orthogonal. Therefore, without using the complicated function of the

ancillary statistic, we can obtain the advantages of the orthogonal parameters if iy, is small

enough to O(n ™), a=0. The intensive numerical works on the inference of the parameters
in the location-scale model is prepared in other place, in consideration of the skewness and
the location transformation rather than using the system of the partial differential equations in
Cox and Reid(1987).

5 Concluding Remarks

We have started how to make inferences about the parameter of interest in the presence of
a nuisance parameter(s); profile likelihood, conditional likelihood, Bayesian approach,
orthogonality, etc. Among them, we considered the parameter ortogonality by Cox and
Reid(1987), which is used as an aid to computation, approximation, interpretation, and
elimination of the effect of a nuisance parameter(s). The useful results of parameter

orthogonality can be achieved by an @ -approximate orthogonality with a=>=1/2.
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